1 |
The role of F-box only protein 31 in cancer.Oncol Lett. 2018 Apr;15(4):4047-4052. doi: 10.3892/ol.2018.7816. Epub 2018 Jan 17.
|
2 |
FBXO31 is the chromosome 16q24.3 senescence gene, a candidate breast tumor suppressor, and a component of an SCF complex.Cancer Res. 2005 Dec 15;65(24):11304-13. doi: 10.1158/0008-5472.CAN-05-0936.
|
3 |
Identification of miR-29c and its Target FBXO31 as a Key Regulatory Mechanism in Esophageal Cancer Chemoresistance: Functional Validation and Clinical Significance.Theranostics. 2019 Feb 28;9(6):1599-1613. doi: 10.7150/thno.30372. eCollection 2019.
|
4 |
FBXO31 is down-regulated and may function as a tumor suppressor in hepatocellular carcinoma.Oncol Rep. 2010 Sep;24(3):715-20. doi: 10.3892/or_00000912.
|
5 |
Truncation of the E3 ubiquitin ligase component FBXO31 causes non-syndromic autosomal recessive intellectual disability in a Pakistani family. Hum Genet. 2014 Aug;133(8):975-84. doi: 10.1007/s00439-014-1438-0. Epub 2014 Mar 13.
|
6 |
The tumor suppressor FBXO31 preserves genomic integrity by regulating DNA replication and segregation through precise control of cyclin A levels.J Biol Chem. 2019 Oct 11;294(41):14879-14895. doi: 10.1074/jbc.RA118.007055. Epub 2019 Aug 14.
|
7 |
F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage.Nature. 2009 Jun 4;459(7247):722-5. doi: 10.1038/nature08011. Epub 2009 May 3.
|
8 |
A Rare Variant (rs933717) at FBXO31-MAP1LC3B in Chinese Is Associated With Systemic Lupus Erythematosus.Arthritis Rheumatol. 2018 Feb;70(2):287-297. doi: 10.1002/art.40353. Epub 2018 Jan 9.
|
9 |
Deletions in 16q24.2 are associated with autism spectrum disorder, intellectual disability and congenital renal malformation.J Med Genet. 2013 Mar;50(3):163-73. doi: 10.1136/jmedgenet-2012-101288. Epub 2013 Jan 18.
|
10 |
Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
|
11 |
Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
|
12 |
Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
|
13 |
Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
|
14 |
Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
|
15 |
Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
|
16 |
Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
|
17 |
Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
|
18 |
Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
|
19 |
Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
|
20 |
Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
|
|
|
|
|
|
|