General Information of Drug Off-Target (DOT) (ID: OTG92DK5)

DOT Name UDP-N-acetylglucosamine transporter (SLC35A3)
Synonyms Golgi UDP-GlcNAc transporter; Solute carrier family 35 member A3
Gene Name SLC35A3
Related Disease
Autism spectrum disorder - epilepsy - arthrogryposis syndrome ( )
UniProt ID
S35A3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF04142
Sequence
MFANLKYVSLGILVFQTTSLVLTMRYSRTLKEEGPRYLSSTAVVVAELLKIMACILLVYK
DSKCSLRALNRVLHDEILNKPMETLKLAIPSGIYTLQNNLLYVALSNLDAATYQVTYQLK
ILTTALFSVSMLSKKLGVYQWLSLVILMTGVAFVQWPSDSQLDSKELSAGSQFVGLMAVL
TACFSSGFAGVYFEKILKETKQSVWIRNIQLGFFGSIFGLMGVYIYDGELVSKNGFFQGY
NRLTWIVVVLQALGGLVIAAVIKYADNILKGFATSLSIILSTLISYFWLQDFVPTSVFFL
GAILVITATFLYGYDPKPAGNPTKA
Function
Transports diphosphate-N-acetylglucosamine (UDP-GlcNAc) from the cytosol into the lumen of the Golgi apparatus, functioning as an antiporter that exchanges UDP-N-acetyl-alpha-D-glucosamine for UMP. May supply UDP-GlcNAc as substrate for Golgi-resident glycosyltransferases that generate highly branched, multiantennary complex N-glycans and keratan sulfate. However, the exact role of SLC35A3 still needs to be elucidated, it could be a member of a catalytically more efficient multiprotein complex rather than function independently as a single transporter.
Reactome Pathway
Transport of nucleotide sugars (R-HSA-727802 )
Defective SLC35A3 causes arthrogryposis, mental retardation, and seizures (AMRS) (R-HSA-5619083 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Autism spectrum disorder - epilepsy - arthrogryposis syndrome DISZ6MFS Strong Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of UDP-N-acetylglucosamine transporter (SLC35A3). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of UDP-N-acetylglucosamine transporter (SLC35A3). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of UDP-N-acetylglucosamine transporter (SLC35A3). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of UDP-N-acetylglucosamine transporter (SLC35A3). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of UDP-N-acetylglucosamine transporter (SLC35A3). [6]
Cocaine DMSOX7I Approved Cocaine increases the expression of UDP-N-acetylglucosamine transporter (SLC35A3). [8]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of UDP-N-acetylglucosamine transporter (SLC35A3). [10]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of UDP-N-acetylglucosamine transporter (SLC35A3). [11]
crotylaldehyde DMTWRQI Investigative crotylaldehyde decreases the expression of UDP-N-acetylglucosamine transporter (SLC35A3). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of UDP-N-acetylglucosamine transporter (SLC35A3). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of UDP-N-acetylglucosamine transporter (SLC35A3). [9]
------------------------------------------------------------------------------------

References

1 A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Res. 2006 Jan;16(1):97-105. doi: 10.1101/gr.3690506. Epub 2005 Dec 12.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
8 Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling. PLoS One. 2007 Nov 14;2(11):e1187. doi: 10.1371/journal.pone.0001187.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
11 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
12 Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde. Toxicol Lett. 2010 Aug 16;197(2):113-22.