General Information of Drug Off-Target (DOT) (ID: OTGD9A2A)

DOT Name CDK5 and ABL1 enzyme substrate 2 (CABLES2)
Synonyms Interactor with CDK3 2; Ik3-2
Gene Name CABLES2
Related Disease
Colon cancer ( )
Colorectal adenocarcinoma ( )
Colorectal cancer ( )
Colorectal cancer, susceptibility to, 1 ( )
Colorectal cancer, susceptibility to, 10 ( )
Colorectal cancer, susceptibility to, 12 ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Neoplasm ( )
UniProt ID
CABL2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00134
Sequence
MAAAAAGGAPGPAPGPAGPPPPAAPTSAARAPPQALRRRGDSRRRQAALFFLNNISLDGR
PPSLGPGGEKPPPPPAEAREPPAPPPPEPPTGLPARTPAPQGLLSPTQVPTGLGLDGQRQ
RKRVTSQRCSLEFLEDAVGCAPAQRTKHTSGSPRHKGLKKTHFIKNMRQYDTRNSRIVLI
CAKRSLCAAFSVLPYGEGLRISDLRVDSQKQRHPSGGVSVSSEMVFELEGVELGADGKVV
SYAKFLYPTNALVTHKSDSHGLLPTPRPSVPRTLPGSRHKPAPTKSAPASTELGSDVGDT
LEYNPNLLDDPQWPCGKHKRVLIFASYMTTVIEYVKPSDLKKDMNETFREKFPHVKLTLS
KIRSLKREMRSLSEECSLEPVTVAMAYVYFEKLVLQGKLSKQNRKLCAGACVLLAAKISS
DLRKSGVTQLIDKLEERFRFNRRDLIGFEFTVLVALELALYLPENQVLPHYRRLTQQF
Function Unknown. Probably involved in G1-S cell cycle transition.
Reactome Pathway
Factors involved in megakaryocyte development and platelet production (R-HSA-983231 )

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Colon cancer DISVC52G Strong Genetic Variation [1]
Colorectal adenocarcinoma DISPQOUB Strong Genetic Variation [1]
Colorectal cancer DISNH7P9 Strong Genetic Variation [1]
Colorectal cancer, susceptibility to, 1 DISZ794C Strong Genetic Variation [1]
Colorectal cancer, susceptibility to, 10 DISQXMYM Strong Genetic Variation [1]
Colorectal cancer, susceptibility to, 12 DIS4FXJX Strong Genetic Variation [1]
Colorectal carcinoma DIS5PYL0 Strong Genetic Variation [1]
Colorectal neoplasm DISR1UCN Strong Genetic Variation [1]
Neoplasm DISZKGEW Strong Genetic Variation [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [3]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [8]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [10]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [7]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [9]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [11]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [13]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of CDK5 and ABL1 enzyme substrate 2 (CABLES2). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 Novel Common Genetic Susceptibility Loci for Colorectal Cancer.J Natl Cancer Inst. 2019 Feb 1;111(2):146-157. doi: 10.1093/jnci/djy099.
2 In silico pathway analysis and tissue specific cis-eQTL for colorectal cancer GWAS risk variants.BMC Genomics. 2017 May 15;18(1):381. doi: 10.1186/s12864-017-3750-2.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
8 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
9 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
10 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
11 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
12 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
13 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
14 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.