General Information of Drug Off-Target (DOT) (ID: OTGJMRZ0)

DOT Name Ephrin type-A receptor 1 (EPHA1)
Synonyms hEpha1; EC 2.7.10.1; EPH tyrosine kinase; EPH tyrosine kinase 1; Erythropoietin-producing hepatoma receptor; Tyrosine-protein kinase receptor EPH
Gene Name EPHA1
UniProt ID
EPHA1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2K1K; 2K1L; 3HIL; 3KKA
EC Number
2.7.10.1
Pfam ID
PF14575 ; PF01404 ; PF07699 ; PF00041 ; PF07714 ; PF00536
Sequence
MERRWPLGLGLVLLLCAPLPPGARAKEVTLMDTSKAQGELGWLLDPPKDGWSEQQQILNG
TPLYMYQDCPMQGRRDTDHWLRSNWIYRGEEASRVHVELQFTVRDCKSFPGGAGPLGCKE
TFNLLYMESDQDVGIQLRRPLFQKVTTVAADQSFTIRDLVSGSVKLNVERCSLGRLTRRG
LYLAFHNPGACVALVSVRVFYQRCPETLNGLAQFPDTLPGPAGLVEVAGTCLPHARASPR
PSGAPRMHCSPDGEWLVPVGRCHCEPGYEEGGSGEACVACPSGSYRMDMDTPHCLTCPQQ
STAESEGATICTCESGHYRAPGEGPQVACTGPPSAPRNLSFSASGTQLSLRWEPPADTGG
RQDVRYSVRCSQCQGTAQDGGPCQPCGVGVHFSPGARGLTTPAVHVNGLEPYANYTFNVE
AQNGVSGLGSSGHASTSVSISMGHAESLSGLSLRLVKKEPRQLELTWAGSRPRSPGANLT
YELHVLNQDEERYQMVLEPRVLLTELQPDTTYIVRVRMLTPLGPGPFSPDHEFRTSPPVS
RGLTGGEIVAVIFGLLLGAALLLGILVFRSRRAQRQRQQRQRDRATDVDREDKLWLKPYV
DLQAYEDPAQGALDFTRELDPAWLMVDTVIGEGEFGEVYRGTLRLPSQDCKTVAIKTLKD
TSPGGQWWNFLREATIMGQFSHPHILHLEGVVTKRKPIMIITEFMENGALDAFLREREDQ
LVPGQLVAMLQGIASGMNYLSNHNYVHRDLAARNILVNQNLCCKVSDFGLTRLLDDFDGT
YETQGGKIPIRWTAPEAIAHRIFTTASDVWSFGIVMWEVLSFGDKPYGEMSNQEVMKSIE
DGYRLPPPVDCPAPLYELMKNCWAYDRARRPHFQKLQAHLEQLLANPHSLRTIANFDPRM
TLRLPSLSGSDGIPYRTVSEWLESIRMKRYILHFHSAGLDTMECVLELTAEDLTQMGITL
PGHQKRILCSIQGFKD
Function
Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Binds with a low affinity EFNA3 and EFNA4 and with a high affinity to EFNA1 which most probably constitutes its cognate/functional ligand. Upon activation by EFNA1 induces cell attachment to the extracellular matrix inhibiting cell spreading and motility through regulation of ILK and downstream RHOA and RAC. Also plays a role in angiogenesis and regulates cell proliferation. May play a role in apoptosis.
Tissue Specificity Overexpressed in several carcinomas.
KEGG Pathway
Axon guidance (hsa04360 )
Reactome Pathway
POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation (R-HSA-2892247 )
EPHA-mediated growth cone collapse (R-HSA-3928663 )
EPH-ephrin mediated repulsion of cells (R-HSA-3928665 )
EPH-Ephrin signaling (R-HSA-2682334 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Ephrin type-A receptor 1 (EPHA1). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Ephrin type-A receptor 1 (EPHA1). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Ephrin type-A receptor 1 (EPHA1). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Ephrin type-A receptor 1 (EPHA1). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Ephrin type-A receptor 1 (EPHA1). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Ephrin type-A receptor 1 (EPHA1). [7]
Testosterone DM7HUNW Approved Testosterone increases the expression of Ephrin type-A receptor 1 (EPHA1). [7]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Ephrin type-A receptor 1 (EPHA1). [8]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Ephrin type-A receptor 1 (EPHA1). [9]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the expression of Ephrin type-A receptor 1 (EPHA1). [5]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Ephrin type-A receptor 1 (EPHA1). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Ephrin type-A receptor 1 (EPHA1). [11]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Ephrin type-A receptor 1 (EPHA1). [12]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Ephrin type-A receptor 1 (EPHA1). [5]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Ephrin type-A receptor 1 (EPHA1). [12]
Afimoxifene DMFORDT Phase 2 Afimoxifene increases the expression of Ephrin type-A receptor 1 (EPHA1). [5]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Ephrin type-A receptor 1 (EPHA1). [15]
PMID25656651-Compound-5 DMAI95U Patented PMID25656651-Compound-5 decreases the activity of Ephrin type-A receptor 1 (EPHA1). [17]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Ephrin type-A receptor 1 (EPHA1). [19]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Ephrin type-A receptor 1 (EPHA1). [20]
GW7604 DMCA4RM Investigative GW7604 increases the expression of Ephrin type-A receptor 1 (EPHA1). [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Ephrin type-A receptor 1 (EPHA1). [6]
Rigosertib DMOSTXF Phase 3 Rigosertib increases the phosphorylation of Ephrin type-A receptor 1 (EPHA1). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Ephrin type-A receptor 1 (EPHA1). [14]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Ephrin type-A receptor 1 (EPHA1). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Ephrin type-A receptor 1 (EPHA1). [18]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Gene expression profiles with activation of the estrogen receptor alpha-selective estrogen receptor modulator complex in breast cancer cells expressing wild-type estrogen receptor. Cancer Res. 2002 Aug 1;62(15):4419-26.
6 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
7 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
8 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
9 Epigenetic silencing of EphA1 expression in colorectal cancer is correlated with poor survival. Br J Cancer. 2009 Apr 7;100(7):1095-102. doi: 10.1038/sj.bjc.6604970. Epub 2009 Mar 10.
10 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Rigosertib as a selective anti-tumor agent can ameliorate multiple dysregulated signaling transduction pathways in high-grade myelodysplastic syndrome. Sci Rep. 2014 Dec 4;4:7310. doi: 10.1038/srep07310.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
17 AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009 Nov 6;16(5):401-12. doi: 10.1016/j.ccr.2009.09.028.
18 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
19 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
20 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.