General Information of Drug Off-Target (DOT) (ID: OTGT3E98)

DOT Name GRAM domain-containing protein 2B (GRAMD2B)
Synonyms HCV NS3-transactivated protein 2
Gene Name GRAMD2B
Related Disease
Chronic renal failure ( )
End-stage renal disease ( )
Non-insulin dependent diabetes ( )
UniProt ID
GRM2B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF02893
Sequence
MTELQQDVEDTKPAKVLGKRESKLGSAHSEAENGVEEKKKACRSPTAQSPTPSVEADSPD
QKKIISLWSKSSFDGASLASDKNDCKTESKNDPKTERKKSSSSSQYKANMHFHKLFLSVP
TEEPLKQSFTCALQKEILYQGKLFVSENWICFHSKVFGKDTKISIPAFSVTLIKKTKTAL
LVPNALIIATVTDRYIFVSLLSRDSTYKLLKSVCGHLENTSVGNSPNPSSAENSFRADRP
SSLPLDFNDEFSDLDGVVQQRRQDMEGYSSSGSQTPESENSRDFHATESQTVLNVSKGEA
KPTRADAHVNRVPEGKAKSLPVQGLSETVGILHKVKSQKCPMLHHILIFYAIVVCALIIS
TFYMRYRINTLEEQLGLLTSIVDTHNTEQAAPSGLRSQVQFNVEVLCQELTANIVKLEKI
QNNLQKLLENGD

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Chronic renal failure DISGG7K6 Limited Genetic Variation [1]
End-stage renal disease DISXA7GG Limited Genetic Variation [1]
Non-insulin dependent diabetes DISK1O5Z Limited Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of GRAM domain-containing protein 2B (GRAMD2B). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of GRAM domain-containing protein 2B (GRAMD2B). [10]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of GRAM domain-containing protein 2B (GRAMD2B). [13]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of GRAM domain-containing protein 2B (GRAMD2B). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of GRAM domain-containing protein 2B (GRAMD2B). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of GRAM domain-containing protein 2B (GRAMD2B). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of GRAM domain-containing protein 2B (GRAMD2B). [3]
Temozolomide DMKECZD Approved Temozolomide increases the expression of GRAM domain-containing protein 2B (GRAMD2B). [6]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of GRAM domain-containing protein 2B (GRAMD2B). [7]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of GRAM domain-containing protein 2B (GRAMD2B). [8]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of GRAM domain-containing protein 2B (GRAMD2B). [9]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of GRAM domain-containing protein 2B (GRAMD2B). [8]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of GRAM domain-containing protein 2B (GRAMD2B). [11]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of GRAM domain-containing protein 2B (GRAMD2B). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of GRAM domain-containing protein 2B (GRAMD2B). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of GRAM domain-containing protein 2B (GRAMD2B). [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of GRAM domain-containing protein 2B (GRAMD2B). [16]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of GRAM domain-containing protein 2B (GRAMD2B). [17]
Lithium chloride DMHYLQ2 Investigative Lithium chloride increases the expression of GRAM domain-containing protein 2B (GRAMD2B). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 Genome-wide association study identifies novel loci for type 2 diabetes-attributed end-stage kidney disease in African Americans.Hum Genomics. 2019 May 15;13(1):21. doi: 10.1186/s40246-019-0205-7.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4578-83.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
10 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
11 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
14 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
17 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
18 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.