General Information of Drug Off-Target (DOT) (ID: OTHPN53C)

DOT Name F-box only protein 42 (FBXO42)
Synonyms Just one F-box and Kelch domain-containing protein
Gene Name FBXO42
Related Disease
Parkinson disease ( )
UniProt ID
FBX42_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF12937 ; PF13415 ; PF13854
Sequence
MASSSDSEDDSFMAVDQEETVLEGTMDQDEEPHPVLEAEETRHNRSMSELPEEVLEYILS
FLSPYQEHKTAALVCKQWYRLIKGVAHQCYHGFMKAVQEGNIQWESRTYPYPGTPITQRF
SHSACYYDANQSMYVFGGCTQSSCNAAFNDLWRLDLNSKEWIRPLASGSYPSPKAGATLV
VYKDLLVLFGGWTRPSPYPLHQPERFFDEIHTYSPSKNWWNCIVTTHGPPPMAGHSSCVI
DDKMIVFGGSLGSRQMSNDVWVLDLEQWAWSKPNISGPSPHPRGGQSQIVIDDATILILG
GCGGPNALFKDAWLLHMHSGPWAWQPLKVENEEHGAPELWCHPACRVGQCVVVFSQAPSG
RAPLSPSLNSRPSPISATPPALVPETREYRSQSPVRSMDEAPCVNGRWGTLRPRAQRQTP
SGSREGSLSPARGDGSPILNGGSLSPGTAAVGGSSLDSPVQAISPSTPSAPEGYDLKIGL
SLAPRRGSLPDQKDLRLGSIDLNWDLKPASSSNPMDGMDNRTVGGSMRHPPEQTNGVHTP
PHVASALAGAVSPGALRRSLEAIKAMSSKGPSASAALSPPLGSSPGSPGSQSLSSGETVP
IPRPGPAQGDGHSLPPIARRLGHHPPQSLNVGKPLYQSMNCKPMQMYVLDIKDTKEKGRV
KWKVFNSSSVVGPPETSLHTVVQGRGELIIFGGLMDKKQNVKYYPKTNALYFVRAKR
Function Substrate-recognition component of some SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex. Specifically recognizes p53/TP53, promoting its ubiquitination and degradation.

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Parkinson disease DISQVHKL Limited Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of F-box only protein 42 (FBXO42). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of F-box only protein 42 (FBXO42). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of F-box only protein 42 (FBXO42). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of F-box only protein 42 (FBXO42). [5]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of F-box only protein 42 (FBXO42). [6]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of F-box only protein 42 (FBXO42). [7]
Sulindac DM2QHZU Approved Sulindac increases the expression of F-box only protein 42 (FBXO42). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of F-box only protein 42 (FBXO42). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of F-box only protein 42 (FBXO42). [11]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of F-box only protein 42 (FBXO42). [12]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of F-box only protein 42 (FBXO42). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of F-box only protein 42 (FBXO42). [9]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of F-box only protein 42 (FBXO42). [14]
------------------------------------------------------------------------------------

References

1 Genetic analysis of the FBXO42 gene in Chinese Han patients with Parkinson's disease.BMC Neurol. 2013 Sep 25;13:125. doi: 10.1186/1471-2377-13-125.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
7 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
8 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
12 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
14 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.