General Information of Drug Off-Target (DOT) (ID: OTIV9RTK)

DOT Name Septin-6 (SEPTIN6)
Gene Name SEPTIN6
UniProt ID
SEPT6_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2QAG; 6UPA; 6WBP; 7M6J
Pfam ID
PF00735
Sequence
MAATDIARQVGEGCRTVPLAGHVGFDSLPDQLVNKSVSQGFCFNILCVGETGLGKSTLMD
TLFNTKFEGEPATHTQPGVQLQSNTYDLQESNVRLKLTIVSTVGFGDQINKEDSYKPIVE
FIDAQFEAYLQEELKIRRVLHTYHDSRIHVCLYFIAPTGHSLKSLDLVTMKKLDSKVNII
PIIAKADAISKSELTKFKIKITSELVSNGVQIYQFPTDDESVAEINGTMNAHLPFAVIGS
TEELKIGNKMMRARQYPWGTVQVENEAHCDFVKLREMLIRVNMEDLREQTHTRHYELYRR
CKLEEMGFKDTDPDSKPFSLQETYEAKRNEFLGELQKKEEEMRQMFVQRVKEKEAELKEA
EKELHEKFDRLKKLHQDEKKKLEDKKKSLDDEVNAFKQRKTAAELLQSQGSQAGGSQTLK
RDKEKKNNPWLCTE
Function
Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Involved in cytokinesis. May play a role in HCV RNA replication. Forms a filamentous structure with SEPTIN12, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation.
Tissue Specificity Widely expressed.
KEGG Pathway
Bacterial invasion of epithelial cells (hsa05100 )
Shigellosis (hsa05131 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Septin-6 (SEPTIN6). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Septin-6 (SEPTIN6). [13]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Septin-6 (SEPTIN6). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Septin-6 (SEPTIN6). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Septin-6 (SEPTIN6). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Septin-6 (SEPTIN6). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Septin-6 (SEPTIN6). [6]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Septin-6 (SEPTIN6). [7]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Septin-6 (SEPTIN6). [8]
Testosterone DM7HUNW Approved Testosterone increases the expression of Septin-6 (SEPTIN6). [9]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Septin-6 (SEPTIN6). [10]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Septin-6 (SEPTIN6). [11]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Septin-6 (SEPTIN6). [10]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Septin-6 (SEPTIN6). [12]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Septin-6 (SEPTIN6). [10]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Septin-6 (SEPTIN6). [14]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Septin-6 (SEPTIN6). [15]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Septin-6 (SEPTIN6). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 An approach to elucidate potential mechanism of renal toxicity of arsenic trioxide. Exp Hematol. 2007 Feb;35(2):252-62.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
10 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
11 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
12 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
14 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
15 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
16 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.