General Information of Drug Off-Target (DOT) (ID: OTJ9F01S)

DOT Name Mitoferrin-1 (SLC25A37)
Synonyms Mitochondrial iron transporter 1; Mitochondrial solute carrier protein; Solute carrier family 25 member 37
Gene Name SLC25A37
UniProt ID
MFRN1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00153
Sequence
MELRSGSVGSQAVARRMDGDSRDGGGGKDATGSEDYENLPTSASVSTHMTAGAMAGILEH
SVMYPVDSVKTRMQSLSPDPKAQYTSIYGALKKIMRTEGFWRPLRGVNVMIMGAGPAHAM
YFACYENMKRTLNDVFHHQGNSHLANGIAGSMATLLHDAVMNPAEVVKQRLQMYNSQHRS
AISCIRTVWRTEGLGAFYRSYTTQLTMNIPFQSIHFITYEFLQEQVNPHRTYNPQSHIIS
GGLAGALAAAATTPLDVCKTLLNTQENVALSLANISGRLSGMANAFRTVYQLNGLAGYFK
GIQARVIYQMPSTAISWSVYEFFKYFLTKRQLENRAPY
Function Mitochondrial iron transporter that specifically mediates iron uptake in developing erythroid cells, thereby playing an essential role in heme biosynthesis.
Reactome Pathway
Mitochondrial iron-sulfur cluster biogenesis (R-HSA-1362409 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Mitoferrin-1 (SLC25A37). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Mitoferrin-1 (SLC25A37). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Mitoferrin-1 (SLC25A37). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Mitoferrin-1 (SLC25A37). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Mitoferrin-1 (SLC25A37). [5]
Selenium DM25CGV Approved Selenium increases the expression of Mitoferrin-1 (SLC25A37). [6]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Mitoferrin-1 (SLC25A37). [7]
Cocaine DMSOX7I Approved Cocaine increases the expression of Mitoferrin-1 (SLC25A37). [8]
Heroin diacetylmorphine DMDBWHY Approved Heroin diacetylmorphine increases the expression of Mitoferrin-1 (SLC25A37). [9]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Mitoferrin-1 (SLC25A37). [10]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Mitoferrin-1 (SLC25A37). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Mitoferrin-1 (SLC25A37). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Mitoferrin-1 (SLC25A37). [13]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Mitoferrin-1 (SLC25A37). [15]
AHPN DM8G6O4 Investigative AHPN decreases the expression of Mitoferrin-1 (SLC25A37). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Mitoferrin-1 (SLC25A37). [14]
------------------------------------------------------------------------------------

References

1 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood. 2007 May 15;109(10):4450-60.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
7 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
8 Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J Neurochem. 2004 Mar;88(5):1211-9. doi: 10.1046/j.1471-4159.2003.02247.x.
9 Distinctive profiles of gene expression in the human nucleus accumbens associated with cocaine and heroin abuse. Neuropsychopharmacology. 2006 Oct;31(10):2304-12. doi: 10.1038/sj.npp.1301089. Epub 2006 May 3.
10 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
11 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
12 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
15 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
16 ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: modulation of intracellular calcium homeostasis. Blood. 2004 Jan 1;103(1):194-207.