General Information of Drug Off-Target (DOT) (ID: OTJNHX96)

DOT Name Rho GTPase-activating protein 9 (ARHGAP9)
Synonyms Rho-type GTPase-activating protein 9
Gene Name ARHGAP9
Related Disease
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Coronary vasospasm ( )
Glioma ( )
Liver cancer ( )
Metastatic prostate carcinoma ( )
Neoplasm ( )
Polycystic ovarian syndrome ( )
Hepatocellular carcinoma ( )
UniProt ID
RHG09_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2P0D; 2P0F; 2P0H
Pfam ID
PF00169 ; PF00620 ; PF00018
Sequence
MLSSRWWPSSWGILGLGPRSPPRGSQLCALYAFTYTGADGQQVSLAEGDRFLLLRKTNSD
WWLARRLEAPSTSRPIFVPAAYMIEESIPSQSPTTVIPGQLLWTPGPKLFHGSLEELSQA
LPSRAQASSEQPPPLPRKMCRSVSTDNLSPSLLKPFQEGPSGRSLSQEDLPSEASASTAG
PQPLMSEPPVYCNLVDLRRCPRSPPPGPACPLLQRLDAWEQHLDPNSGRCFYINSLTGCK
SWKPPRRSRSETNPGSMEGTQTLKRNNDVLQPQAKGFRSDTGTPEPLDPQGSLSLSQRTS
QLDPPALQAPRPLPQLLDDPHEVEKSGLLNMTKIAQGGRKLRKNWGPSWVVLTGNSLVFY
REPPPTAPSSGWGPAGSRPESSVDLRGAALAHGRHLSSRRNVLHIRTIPGHEFLLQSDHE
TELRAWHRALRTVIERLVRWVEARREAPTGRDQGSGDRENPLELRLSGSGPAELSAGEDE
EEESELVSKPLLRLSSRRSSIRGPEGTEQNRVRNKLKRLIAKRPPLQSLQERGLLRDQVF
GCQLESLCQREGDTVPSFLRLCIAAVDKRGLDVDGIYRVSGNLAVVQKLRFLVDRERAVT
SDGRYVFPEQPGQEGRLDLDSTEWDDIHVVTGALKLFLRELPQPLVPPLLLPHFRAALAL
SESEQCLSQIQELIGSMPKPNHDTLRYLLEHLCRVIAHSDKNRMTPHNLGIVFGPTLFRP
EQETSDPAAHALYPGQLVQLMLTNFTSLFP
Function
GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has a substantial GAP activity toward CDC42 and RAC1 and less toward RHOA. Has a role in regulating adhesion of hematopoietic cells to the extracellular matrix. Binds phosphoinositides, and has the highest affinity for phosphatidylinositol 3,4,5-trisphosphate, followed by phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 4,5-bisphosphate.
Tissue Specificity Predominantly expressed in peripheral blood leukocytes, spleen, and thymus.
Reactome Pathway
RHOA GTPase cycle (R-HSA-8980692 )
CDC42 GTPase cycle (R-HSA-9013148 )
RAC1 GTPase cycle (R-HSA-9013149 )
Neutrophil degranulation (R-HSA-6798695 )

Molecular Interaction Atlas (MIA) of This DOT

11 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Altered Expression [1]
Breast cancer DIS7DPX1 Strong Biomarker [2]
Breast carcinoma DIS2UE88 Strong Biomarker [2]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Strong Altered Expression [3]
Coronary vasospasm DISSHV10 Strong Biomarker [4]
Glioma DIS5RPEH Strong Biomarker [5]
Liver cancer DISDE4BI Strong Altered Expression [3]
Metastatic prostate carcinoma DISVBEZ9 Strong Biomarker [6]
Neoplasm DISZKGEW Strong Altered Expression [1]
Polycystic ovarian syndrome DISZ2BNG Strong Biomarker [7]
Hepatocellular carcinoma DIS0J828 Limited Biomarker [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Rho GTPase-activating protein 9 (ARHGAP9). [9]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Rho GTPase-activating protein 9 (ARHGAP9). [10]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of Rho GTPase-activating protein 9 (ARHGAP9). [11]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Rho GTPase-activating protein 9 (ARHGAP9). [11]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Rho GTPase-activating protein 9 (ARHGAP9). [12]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Rho GTPase-activating protein 9 (ARHGAP9). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Rho GTPase-activating protein 9 (ARHGAP9). [14]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Rho GTPase-activating protein 9 (ARHGAP9). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Rho GTPase-activating protein 9 (ARHGAP9). [16]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Rho GTPase-activating protein 9 (ARHGAP9). [17]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate increases the expression of Rho GTPase-activating protein 9 (ARHGAP9). [18]
Choline DM5D9YK Investigative Choline affects the expression of Rho GTPase-activating protein 9 (ARHGAP9). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Silencing ARHGAP9 correlates with the risk of breast cancer and inhibits the proliferation, migration, and invasion of breast cancer.J Cell Biochem. 2018 Sep;119(9):7747-7756. doi: 10.1002/jcb.27127. Epub 2018 Jun 15.
2 Bioinformatics analysis of potential therapeutic targets among ARHGAP genes in breast cancer.Oncol Lett. 2019 Dec;18(6):6017-6025. doi: 10.3892/ol.2019.10949. Epub 2019 Oct 2.
3 Ginsenoside Rg3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9.Oncol Lett. 2019 Jan;17(1):965-973. doi: 10.3892/ol.2018.9701. Epub 2018 Nov 15.
4 Mutation of ARHGAP9 in patients with coronary spastic angina.J Hum Genet. 2010 Jan;55(1):42-9. doi: 10.1038/jhg.2009.120. Epub 2009 Nov 13.
5 Expression of CXC-motif-chemokine 12 and the receptor C-X-C receptor 4 in glioma and theeffect on peritumoral brain edema.Oncol Lett. 2018 Feb;15(2):2501-2507. doi: 10.3892/ol.2017.7547. Epub 2017 Dec 8.
6 Cysteine (C)-x-C receptor 4 undergoes transportin 1-dependent nuclear localization and remains functional at the nucleus of metastatic prostate cancer cells.PLoS One. 2013;8(2):e57194. doi: 10.1371/journal.pone.0057194. Epub 2013 Feb 28.
7 Pathway and network-based analysis of genome-wide association studies and RT-PCR validation in polycystic ovary syndrome.Int J Mol Med. 2017 Nov;40(5):1385-1396. doi: 10.3892/ijmm.2017.3146. Epub 2017 Sep 20.
8 ARHGAP9 suppresses the migration and invasion of hepatocellular carcinoma cells through up-regulating FOXJ2/E-cadherin.Cell Death Dis. 2018 Sep 11;9(9):916. doi: 10.1038/s41419-018-0976-0.
9 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
10 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
11 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
14 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
15 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
18 Comparison of the global gene expression profiles produced by methylparaben, n-butylparaben and 17beta-oestradiol in MCF7 human breast cancer cells. J Appl Toxicol. 2007 Jan-Feb;27(1):67-77. doi: 10.1002/jat.1200.
19 Lymphocyte gene expression in subjects fed a low-choline diet differs between those who develop organ dysfunction and those who do not. Am J Clin Nutr. 2007 Jul;86(1):230-9. doi: 10.1093/ajcn/86.1.230.