General Information of Disease (ID: DISVBEZ9)

Disease Name Metastatic prostate carcinoma
Synonyms prostate cancer metastatic; metastatic prostate carcinoma; prostate carcinoma metastatic; metastatic prostate cancer
Definition A carcinoma that arises from the prostate gland and has spread to other anatomic sites.
Disease Hierarchy
DISMJPLE: Prostate carcinoma
DISVBEZ9: Metastatic prostate carcinoma
Disease Identifiers
MONDO ID
MONDO_0004956
UMLS CUI
C0936223
MedGen ID
215232

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 4 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Bicalutamide DMZMSPF Approved Small molecular drug [1]
Cabazitaxel DMPAZHC Approved Small molecular drug [2]
Estradiol DMUNTE3 Approved Small molecular drug [3]
Mitoxantrone DMM39BF Approved Small molecular drug [4]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 36 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
NPEPPS TT371QC Limited Altered Expression [5]
HSPG2 TT5UM29 Disputed Altered Expression [6]
MTA1 TTO4HUS Disputed Biomarker [7]
SRD5A2 TTT02K8 Disputed Genetic Variation [8]
TMPRSS2 TT1GM2Z Disputed Genetic Variation [9]
AGR2 TT9K86S Strong Altered Expression [10]
AMACR TTLN1AP Strong Altered Expression [11]
AR TTKPW01 Strong Biomarker [12]
BACH1 TT2ME4S Strong Biomarker [13]
BMP6 TT07RIB Strong Biomarker [14]
CACNA1G TT729IR Strong Biomarker [15]
CTCFL TTY0RZT Strong Altered Expression [16]
DLK1 TTF4AVB Strong Altered Expression [17]
DPEP1 TTYUENF Strong Biomarker [18]
GLIPR1 TTEQF1O Strong Biomarker [19]
GNRH1 TT0ID4A Strong Genetic Variation [20]
GRPR TTC1MVT Strong Altered Expression [21]
HOXB13 TTZ6I58 Strong Biomarker [22]
HPN TT25MVL Strong Altered Expression [23]
ICA1 TTMX06B Strong Posttranslational Modification [24]
MAP2K5 TTV3O87 Strong Altered Expression [25]
NKX3-1 TT1E0JK Strong Genetic Variation [26]
PAK4 TT7Y3BZ Strong Genetic Variation [27]
PEBP1 TT1BGU8 Strong Altered Expression [28]
PIP5K1A TTA7DU1 Strong Biomarker [29]
PKN1 TTSL41O Strong Biomarker [30]
PPP1CA TTFLH0E Strong Genetic Variation [31]
PSCA TT9T4AV Strong Biomarker [32]
REG4 TTVZEHU Strong Biomarker [33]
RNASEL TT7V0K4 Strong Genetic Variation [34]
SENP1 TTW9HY5 Strong Altered Expression [35]
SPDEF TT2ZUPY Strong Biomarker [36]
SRD5A1 TTTU72V Strong Genetic Variation [37]
STEAP1 TT9E64S Strong Biomarker [38]
TRPV6 TTBK14N Strong Altered Expression [39]
KLK3 TTS78AZ Definitive Biomarker [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 36 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC28A3 DT4YL5R Strong Genetic Variation [41]
SLC45A2 DTNCJAT Strong Biomarker [42]
------------------------------------------------------------------------------------
This Disease Is Related to 6 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
PSAT1 DEBS17P Limited Altered Expression [5]
SRD5A3 DEZGVDW moderate Altered Expression [43]
ACP3 DEDW5H6 Strong Biomarker [44]
DIO3 DET89OV Strong Biomarker [17]
HSD3B1 DERDQWN Strong Altered Expression [45]
MTRR DE6NIY9 Strong Genetic Variation [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
This Disease Is Related to 70 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
CAVIN1 OTFO915U Limited Altered Expression [47]
GNMT OT0O2OQO Limited Biomarker [48]
PLAG1 OTT9AJQY Limited Altered Expression [5]
PROS1 OTXQWNOI Limited Altered Expression [5]
TRIO OT71X1AK Limited Biomarker [49]
SFMBT2 OTZQT61Q Disputed Altered Expression [50]
E2F8 OTQKZGFP moderate Altered Expression [51]
KRT13 OTTYSKGX moderate Altered Expression [52]
PRSS3 OTN3S5YB moderate Biomarker [53]
ADAM15 OTZ7VLTP Strong Biomarker [54]
ARHGAP9 OTJNHX96 Strong Biomarker [55]
ASPN OTYJM80N Strong Genetic Variation [56]
BICRA OTDTPGW0 Strong Biomarker [57]
CAMK2N1 OTKCR5XL Strong Altered Expression [58]
CHD8 OTS7A6AF Strong Altered Expression [16]
CITED2 OT812TV7 Strong Altered Expression [59]
CLDN3 OT71MN9S Strong Altered Expression [60]
CMIP OTZN8Z4A Strong Biomarker [61]
COMMD3 OT1UTJH4 Strong Biomarker [62]
CRYBG1 OTIPDI15 Strong Biomarker [42]
CTBP1 OTVYH2DH Strong Biomarker [63]
DAB2IP OTF456VC Strong Altered Expression [64]
DCAF6 OT3EYK1J Strong Altered Expression [65]
DIAPH3 OTPOT23F Strong Biomarker [66]
DLC1 OTP8LMCR Strong Altered Expression [67]
DTX3L OTCCO2QZ Strong Biomarker [68]
EEF1A1 OT00THXS Strong Altered Expression [69]
ELAC2 OTY3BOF6 Strong Genetic Variation [34]
ERG OTOTX9VU Strong Altered Expression [70]
FLOT1 OT0JPPJZ Strong Biomarker [71]
FLVCR1 OT9XCFOC Strong Biomarker [72]
FMOD OT9EJ5H8 Strong Biomarker [73]
GLRA3 OTC8C2NC Strong Biomarker [74]
GLYATL1 OTS8JSRY Strong Altered Expression [75]
HYAL1 OT2SJN0X Strong Biomarker [76]
KAT8 OT5LPQTR Strong Biomarker [77]
LPXN OTUNV3CK Strong Biomarker [78]
LYPD5 OTGP7UKA Strong Altered Expression [7]
MYO1C OT69L39Y Strong Altered Expression [79]
MYO1E OTM9YSIZ Strong Altered Expression [79]
NSD2 OTQ6SW4R Strong Biomarker [80]
PA2G4 OT7IG7HT Strong Biomarker [81]
PALB2 OT6DNDBG Strong Genetic Variation [82]
PALM2AKAP2 OTI618VF Strong Altered Expression [83]
PAQR7 OTIWX5AM Strong Genetic Variation [46]
PARP14 OTFXJAKK Strong Biomarker [68]
PARP9 OT7K4494 Strong Altered Expression [68]
PCBP2 OTXCN9CG Strong Altered Expression [84]
PFKFB4 OTQYEXL2 Strong Altered Expression [85]
PMEPA1 OTY8Z9UF Strong Altered Expression [86]
PRC1 OTHD0XS0 Strong Biomarker [87]
PRDM4 OTD9PAZJ Strong Altered Expression [88]
PROK1 OT8S7RUG Strong Biomarker [30]
PSAP OTUOEKY7 Strong Biomarker [89]
PYGO2 OTZHB2OI Strong Biomarker [90]
RAP1GDS1 OTH70UHD Strong Altered Expression [91]
RDH11 OTIND43N Strong Biomarker [92]
RELB OTU3QYEF Strong Biomarker [93]
RNASEH2B OT8KHYFY Strong Genetic Variation [94]
SAGE1 OT4H6FFA Strong Biomarker [95]
SMARCE1 OTAX4ITH Strong Altered Expression [96]
SMC1A OT9ZMRK9 Strong Biomarker [97]
SPARCL1 OT74DWMV Strong Altered Expression [98]
SSX2 OT2Z6RLL Strong Altered Expression [99]
TBX2 OTTOT7A9 Strong Biomarker [100]
TGM4 OTORRCG6 Strong Altered Expression [101]
TNPO1 OT7W2CM8 Strong Biomarker [55]
TRAF2 OT1MEZZN Strong Altered Expression [102]
TRAF4 OTJLRVMC Strong Altered Expression [103]
TRAP1 OTNG0L8J Strong Biomarker [104]
------------------------------------------------------------------------------------
⏷ Show the Full List of 70 DOT(s)

References

1 Bicalutamide FDA Label
2 Cabazitaxel FDA Label
3 Estradiol FDA Label
4 Mitoxantrone FDA Label
5 A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers.Clin Cancer Res. 2019 Jan 1;25(1):43-51. doi: 10.1158/1078-0432.CCR-18-1912. Epub 2018 Sep 19.
6 Matrilysin/MMP-7 Cleavage of Perlecan/HSPG2 Complexed with Semaphorin 3A Supports FAK-Mediated Stromal Invasion by Prostate Cancer Cells.Sci Rep. 2018 May 8;8(1):7262. doi: 10.1038/s41598-018-25435-3.
7 Targeting MTA1/HIF-1 signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer progression.Cancer Med. 2017 Nov;6(11):2673-2685. doi: 10.1002/cam4.1209. Epub 2017 Oct 10.
8 The prognostic impact of serum testosterone during androgen-deprivation therapy in patients with metastatic prostate cancer and the SRD5A2 polymorphism.Prostate Cancer Prostatic Dis. 2016 Jun;19(2):191-6. doi: 10.1038/pcan.2016.2. Epub 2016 Feb 9.
9 The relationship of TMPRSS2-ERG gene fusion between primary and metastatic prostate cancers.Hum Pathol. 2012 May;43(5):644-9. doi: 10.1016/j.humpath.2011.06.018. Epub 2011 Sep 19.
10 RAD9A promotes metastatic phenotypes through transcriptional regulation of anterior gradient 2 (AGR2).Carcinogenesis. 2019 Mar 12;40(1):164-172. doi: 10.1093/carcin/bgy131.
11 Decreased alpha-methylacyl CoA racemase expression in localized prostate cancer is associated with an increased rate of biochemical recurrence and cancer-specific death.Cancer Epidemiol Biomarkers Prev. 2005 Jun;14(6):1424-32. doi: 10.1158/1055-9965.EPI-04-0801.
12 IL8 Expression Is Associated with Prostate Cancer Aggressiveness and Androgen Receptor Loss in Primary and Metastatic Prostate Cancer.Mol Cancer Res. 2020 Jan;18(1):153-165. doi: 10.1158/1541-7786.MCR-19-0595. Epub 2019 Oct 11.
13 Silencing of BACH1 inhibits invasion and migration of prostate cancer cells by altering metastasis-related gene expression.Artif Cells Nanomed Biotechnol. 2018 Nov;46(7):1495-1504. doi: 10.1080/21691401.2017.1374284. Epub 2017 Sep 11.
14 WNT5A induces castration-resistant prostate cancer via CCL2 and tumour-infiltrating macrophages.Br J Cancer. 2018 Mar 6;118(5):670-678. doi: 10.1038/bjc.2017.451. Epub 2018 Jan 30.
15 T-type calcium channels drive the proliferation of androgen-receptor negative prostate cancer cells.Prostate. 2019 Sep;79(13):1580-1586. doi: 10.1002/pros.23879. Epub 2019 Jul 23.
16 Frequent disruption of chromodomain helicase DNA-binding protein 8 (CHD8) and functionally associated chromatin regulators in prostate cancer. Neoplasia. 2014 Dec;16(12):1018-27. doi: 10.1016/j.neo.2014.10.003.
17 microRNAs and Prostate Cancer.Adv Exp Med Biol. 2015;889:105-18. doi: 10.1007/978-3-319-23730-5_7.
18 Comparison of 18F-Fluciclovine PET/CT and 99mTc-MDP bone scan in detection of bone metastasis in prostate cancer.Nucl Med Commun. 2019 Sep;40(9):940-946. doi: 10.1097/MNM.0000000000001051.
19 Gene-modified bone marrow cell therapy for prostate cancer.Gene Ther. 2008 May;15(10):787-96. doi: 10.1038/gt.2008.37. Epub 2008 Apr 3.
20 The Association of Polymorphisms in the Gene Encoding Gonadotropin-Releasing Hormone with Serum Testosterone Level during Androgen Deprivation Therapy and Prognosis of Metastatic Prostate Cancer.J Urol. 2018 Mar;199(3):734-740. doi: 10.1016/j.juro.2017.09.076. Epub 2017 Sep 20.
21 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression.J Nucl Med. 2009 Dec;50(12):2017-24. doi: 10.2967/jnumed.109.064444. Epub 2009 Nov 12.
22 HOXB13 as an immunohistochemical marker of prostatic origin in metastatic tumors.APMIS. 2016 Mar;124(3):188-93. doi: 10.1111/apm.12483. Epub 2015 Nov 20.
23 Matrix-dependent regulation of AKT in Hepsin-overexpressing PC3 prostate cancer cells.Neoplasia. 2011 Jul;13(7):579-89. doi: 10.1593/neo.11294.
24 Global methylation analysis identifies PITX2 as an upstream regulator of the androgen receptor and IGF-I receptor genes in prostate cancer.Horm Metab Res. 2012 Jun;44(7):511-9. doi: 10.1055/s-0032-1311566. Epub 2012 Apr 11.
25 MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression and invasion.Oncogene. 2003 Mar 6;22(9):1381-9. doi: 10.1038/sj.onc.1206154.
26 Chromosome 8 markers of metastatic prostate cancer in African American men: gain of the MIR151 gene and loss of the NKX3-1 gene.Prostate. 2011 Jun 1;71(8):857-71. doi: 10.1002/pros.21302. Epub 2010 Nov 17.
27 PAK4 kinase activity and somatic mutation promote carcinoma cell motility and influence inhibitor sensitivity.Oncogene. 2013 Apr 18;32(16):2114-20. doi: 10.1038/onc.2012.233. Epub 2012 Jun 11.
28 MiR-543 Promotes Proliferation and Epithelial-Mesenchymal Transition in Prostate Cancer via Targeting RKIP.Cell Physiol Biochem. 2017;41(3):1135-1146. doi: 10.1159/000464120. Epub 2017 Feb 28.
29 The functional interlink between AR and MMP9/VEGF signaling axis is mediated through PIP5K1/pAKT in prostate cancer.Int J Cancer. 2020 Mar 15;146(6):1686-1699. doi: 10.1002/ijc.32607. Epub 2019 Aug 16.
30 PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells.Oncotarget. 2014 Dec 30;5(24):12646-64. doi: 10.18632/oncotarget.2653.
31 Deregulated PP1 phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism.Nat Commun. 2018 Jan 15;9(1):159. doi: 10.1038/s41467-017-02272-y.
32 Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer.Oncoimmunology. 2017 Oct 16;7(2):e1380764. doi: 10.1080/2162402X.2017.1380764. eCollection 2018.
33 Reg IV: a promising marker of hormone refractory metastatic prostate cancer.Clin Cancer Res. 2005 Mar 15;11(6):2237-43. doi: 10.1158/1078-0432.CCR-04-0356.
34 Association of hereditary prostate cancer gene polymorphic variants with sporadic aggressive prostate carcinoma.Prostate. 2006 Jan 1;66(1):49-56. doi: 10.1002/pros.20320.
35 SUMO-specific protease 1 promotes prostate cancer progression and metastasis.Oncogene. 2013 May 9;32(19):2493-8. doi: 10.1038/onc.2012.250. Epub 2012 Jun 25.
36 Loss of PDEF, a prostate-derived Ets factor is associated with aggressive phenotype of prostate cancer: regulation of MMP 9 by PDEF. Mol Cancer. 2010 Jun 15;9:148.
37 SRD5A gene polymorphism in Japanese men predicts prognosis of metastatic prostate cancer with androgen-deprivation therapy.Eur J Cancer. 2015 Sep;51(14):1962-9. doi: 10.1016/j.ejca.2015.06.122. Epub 2015 Jul 11.
38 Pharmacokinetics and Biodistribution of a [(89)Zr]Zr-DFO-MSTP2109A Anti-STEAP1 Antibody in Metastatic Castration-Resistant Prostate Cancer Patients.Mol Pharm. 2019 Jul 1;16(7):3083-3090. doi: 10.1021/acs.molpharmaceut.9b00326. Epub 2019 May 31.
39 Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer.J Biol Chem. 2001 Jun 1;276(22):19461-8. doi: 10.1074/jbc.M009895200. Epub 2001 Feb 2.
40 Temporal changes in survival in men with de novo metastatic prostate cancer: nationwide population-based study.Acta Oncol. 2020 Jan;59(1):106-111. doi: 10.1080/0284186X.2019.1662084. Epub 2019 Sep 17.
41 Correction: A genetic variant in SLC28A3, rs56350726, is associated with progression to castration-resistant prostate cancer in a Korean population with metastatic prostate cancer.Oncotarget. 2018 Aug 7;9(61):31938. doi: 10.18632/oncotarget.25970. eCollection 2018 Aug 7.
42 AIM1 is an actin-binding protein that suppresses cell migration and micrometastatic dissemination.Nat Commun. 2017 Jul 26;8(1):142. doi: 10.1038/s41467-017-00084-8.
43 Role of dutasteride in pre-clinical ETS fusion-positive prostate cancer models.Prostate. 2012 Oct 1;72(14):1542-9. doi: 10.1002/pros.22509. Epub 2012 Mar 13.
44 Recent Development and Clinical Application of Cancer Vaccine: Targeting Neoantigens.J Immunol Res. 2018 Dec 19;2018:4325874. doi: 10.1155/2018/4325874. eCollection 2018.
45 AR Signaling in Prostate Cancer Regulates a Feed-Forward Mechanism of Androgen Synthesis by Way of HSD3B1 Upregulation.Endocrinology. 2018 Aug 1;159(8):2884-2890. doi: 10.1210/en.2018-00283.
46 High-resolution physical map and transcript identification of a prostate cancer deletion interval on 8p22.Genome Res. 2000 Feb;10(2):244-57. doi: 10.1101/gr.10.2.244.
47 Galectin-3 Overrides PTRF/Cavin-1 Reduction of PC3 Prostate Cancer Cell Migration.PLoS One. 2015 May 5;10(5):e0126056. doi: 10.1371/journal.pone.0126056. eCollection 2015.
48 Genetic polymorphisms of the glycine N-methyltransferase and prostate cancer risk in the health professionals follow-up study.PLoS One. 2014 May 6;9(5):e94683. doi: 10.1371/journal.pone.0094683. eCollection 2014.
49 HSP27, ALDH6A1 and Prohibitin Act as a Trio-biomarker to Predict Survival in Late Metastatic Prostate Cancer.Anticancer Res. 2018 Nov;38(11):6551-6560. doi: 10.21873/anticanres.13021.
50 SFMBT2 (Scm-like with four mbt domains 2) negatively regulates cell migration and invasion in prostate cancer cells.Oncotarget. 2016 Jul 26;7(30):48250-48264. doi: 10.18632/oncotarget.10198.
51 Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016 Oct;5(10):2899-2908.
52 Keratin 13 expression reprograms bone and brain metastases of human prostate cancer cells.Oncotarget. 2016 Dec 20;7(51):84645-84657. doi: 10.18632/oncotarget.13175.
53 PRSS3/mesotrypsin is a therapeutic target for metastatic prostate cancer.Mol Cancer Res. 2012 Dec;10(12):1555-66. doi: 10.1158/1541-7786.MCR-12-0314.
54 ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction.Cancer Res. 2008 Feb 15;68(4):1092-9. doi: 10.1158/0008-5472.CAN-07-2432.
55 Cysteine (C)-x-C receptor 4 undergoes transportin 1-dependent nuclear localization and remains functional at the nucleus of metastatic prostate cancer cells.PLoS One. 2013;8(2):e57194. doi: 10.1371/journal.pone.0057194. Epub 2013 Feb 28.
56 Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer.Clin Cancer Res. 2016 Jan 15;22(2):448-58. doi: 10.1158/1078-0432.CCR-15-0256. Epub 2015 Oct 7.
57 Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes.J Biol Chem. 2018 Mar 16;293(11):3892-3903. doi: 10.1074/jbc.RA117.001065. Epub 2018 Jan 26.
58 Expression of EMT-Related Genes CAMK2N1 and WNT5A is increased in Locally Invasive and Metastatic Prostate Cancer.J Cancer. 2019 Oct 15;10(24):5915-5925. doi: 10.7150/jca.34564. eCollection 2019.
59 Aberrant expression of CITED2 promotes prostate cancer metastasis by activating the nucleolin-AKT pathway.Nat Commun. 2018 Oct 5;9(1):4113. doi: 10.1038/s41467-018-06606-2.
60 Database-augmented Mass Spectrometry Analysis of Exosomes Identifies Claudin 3 as a Putative Prostate Cancer Biomarker.Mol Cell Proteomics. 2017 Jun;16(6):998-1008. doi: 10.1074/mcp.M117.068577. Epub 2017 Apr 9.
61 Assessment of Treatment Response by 99mTc-MIP-1404 SPECT/CT: A Pilot Study in Patients With Metastatic Prostate Cancer.Clin Nucl Med. 2018 Aug;43(8):e250-e258. doi: 10.1097/RLU.0000000000002162.
62 COMMD3:BMI1 Fusion and COMMD3 Protein Regulate C-MYC Transcription: Novel Therapeutic Target for Metastatic Prostate Cancer.Mol Cancer Ther. 2019 Nov;18(11):2111-2123. doi: 10.1158/1535-7163.MCT-19-0150. Epub 2019 Aug 29.
63 Role of transcriptional corepressor CtBP1 in prostate cancer progression.Neoplasia. 2012 Oct;14(10):905-14. doi: 10.1593/neo.121192.
64 DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis.Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19878-83. doi: 10.1073/pnas.0908458106. Epub 2009 Nov 10.
65 Amplification and overexpression of prosaposin in prostate cancer.Genes Chromosomes Cancer. 2005 Dec;44(4):351-64. doi: 10.1002/gcc.20249.
66 Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells: potential effects on the tumor microenvironment.Cancer Biol Ther. 2014 Apr;15(4):409-18. doi: 10.4161/cbt.27627. Epub 2014 Jan 14.
67 Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer.Oncotarget. 2017 Oct 24;8(55):94834-94849. doi: 10.18632/oncotarget.22014. eCollection 2017 Nov 7.
68 DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells.Mol Cancer. 2014 May 27;13:125. doi: 10.1186/1476-4598-13-125.
69 Antisense inhibition of the PTI-1 oncogene reverses cancer phenotypes.Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1764-9. doi: 10.1073/pnas.95.4.1764.
70 Comparison of ERG and SPINK1 expression among incidental and metastatic prostate cancer in Japanese men.Prostate. 2019 Jan;79(1):3-8. doi: 10.1002/pros.23705. Epub 2018 Jul 26.
71 Sumoylation of Flotillin-1 promotes EMT in metastatic prostate cancer by suppressing Snail degradation.Oncogene. 2019 Apr;38(17):3248-3260. doi: 10.1038/s41388-018-0641-1. Epub 2019 Jan 10.
72 Assessment of a fragment of e-cadherin as a serum biomarker with predictive value for prostate cancer.Br J Cancer. 2005 Jun 6;92(11):2018-23. doi: 10.1038/sj.bjc.6602599.
73 Fibroblast and prostate tumor cell cross-talk: fibroblast differentiation, TGF-, and extracellular matrix down-regulation.Exp Cell Res. 2010 Nov 15;316(19):3207-26. doi: 10.1016/j.yexcr.2010.08.005. Epub 2010 Aug 18.
74 Transition from androgenic to neurosteroidal action of 5-androstane-3, 17-diol through the type A -aminobutyric acid receptor in prostate cancer progression.J Steroid Biochem Mol Biol. 2018 Apr;178:89-98. doi: 10.1016/j.jsbmb.2017.11.006. Epub 2017 Nov 21.
75 Characterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer.Prostate. 2019 Oct;79(14):1629-1639. doi: 10.1002/pros.23887. Epub 2019 Aug 2.
76 Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model.Am J Pathol. 2006 Oct;169(4):1415-26. doi: 10.2353/ajpath.2006.060324.
77 The aspirin metabolite salicylate inhibits lysine acetyltransferases and MUC1 induced epithelial to mesenchymal transition.Sci Rep. 2017 Jul 17;7(1):5626. doi: 10.1038/s41598-017-06149-4.
78 Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells.Am J Physiol Cell Physiol. 2007 Jun;292(6):C2288-96. doi: 10.1152/ajpcell.00503.2006. Epub 2007 Feb 28.
79 Myosin isoform expressed in metastatic prostate cancer stimulates cell invasion.Sci Rep. 2017 Aug 16;7(1):8476. doi: 10.1038/s41598-017-09158-5.
80 NSD2 is a conserved driver of metastatic prostate cancer progression.Nat Commun. 2018 Dec 5;9(1):5201.
81 ErbB3 binding protein 1 represses metastasis-promoting gene anterior gradient protein 2 in prostate cancer.Cancer Res. 2010 Jan 1;70(1):240-8. doi: 10.1158/0008-5472.CAN-09-2904.
82 Metastatic Prostate Cancer: Effects of Genetic Testing on Care.Clin J Oncol Nurs. 2019 Feb 1;23(1):32-35. doi: 10.1188/19.CJON.32-35.
83 A-kinase anchoring protein 2 is required for calcitonin-mediated invasion of cancer cells.Endocr Relat Cancer. 2016 Jan;23(1):1-14. doi: 10.1530/ERC-15-0425. Epub 2015 Oct 2.
84 Selection and cloning of poly(rC)-binding protein 2 and Raf kinase inhibitor protein RNA activators of 2',5'-oligoadenylate synthetase from prostate cancer cells.Nucleic Acids Res. 2006;34(22):6684-95. doi: 10.1093/nar/gkl968. Epub 2006 Dec 1.
85 Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival.Cancer Discov. 2012 Apr;2(4):328-43. doi: 10.1158/2159-8290.CD-11-0234. Epub 2012 Mar 22.
86 The TGF- Signaling Regulator PMEPA1 Suppresses Prostate Cancer Metastases to Bone.Cancer Cell. 2015 Jun 8;27(6):809-21. doi: 10.1016/j.ccell.2015.04.009. Epub 2015 May 14.
87 A Positive Step toward Understanding Double-Negative Metastatic Prostate Cancer.Cancer Cell. 2019 Aug 12;36(2):117-119. doi: 10.1016/j.ccell.2019.07.006.
88 PRDM4 mediates YAP-induced cell invasion by activating leukocyte-specific integrin 2 expression.EMBO Rep. 2018 Jun;19(6):e45180. doi: 10.15252/embr.201745180. Epub 2018 Apr 17.
89 Prosaposin is a novel androgen-regulated gene in prostate cancer cell line LNCaP.J Cell Biochem. 2007 Jun 1;101(3):631-41. doi: 10.1002/jcb.21207.
90 An In Vivo Screen Identifies PYGO2 as a Driver for Metastatic Prostate Cancer.Cancer Res. 2018 Jul 15;78(14):3823-3833. doi: 10.1158/0008-5472.CAN-17-3564. Epub 2018 May 16.
91 SmgGDS is up-regulated in prostate carcinoma and promotes tumour phenotypes in prostate cancer cells.J Pathol. 2009 Feb;217(3):389-97. doi: 10.1002/path.2456.
92 Proteomic Characterization of Prostate Cancer to Distinguish Nonmetastasizing and Metastasizing Primary Tumors and Lymph Node Metastases.Neoplasia. 2018 Feb;20(2):140-151. doi: 10.1016/j.neo.2017.10.009. Epub 2017 Dec 14.
93 The NF-B subunit RelB regulates the migration and invasion abilities and the radio-sensitivity of prostate cancer cells.Int J Oncol. 2016 Jul;49(1):381-92. doi: 10.3892/ijo.2016.3500. Epub 2016 Apr 25.
94 CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions.Nature. 2018 Jul;559(7713):285-289. doi: 10.1038/s41586-018-0291-z. Epub 2018 Jul 4.
95 ASAP1, a gene at 8q24, is associated with prostate cancer metastasis.Cancer Res. 2008 Jun 1;68(11):4352-9. doi: 10.1158/0008-5472.CAN-07-5237.
96 Aberrant BAF57 signaling facilitates prometastatic phenotypes.Clin Cancer Res. 2013 May 15;19(10):2657-67. doi: 10.1158/1078-0432.CCR-12-3049. Epub 2013 Mar 14.
97 SMC1A is associated with radioresistance in prostate cancer and acts by regulating epithelial-mesenchymal transition and cancer stem-like properties.Mol Carcinog. 2019 Jan;58(1):113-125. doi: 10.1002/mc.22913. Epub 2018 Oct 5.
98 Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) is down regulated in aggressive prostate cancers and is prognostic for poor clinical outcome.Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14977-82. doi: 10.1073/pnas.1203525109. Epub 2012 Aug 27.
99 Inducible expression of a prostate cancer-testis antigen, SSX-2, following treatment with a DNA methylation inhibitor.Prostate. 2007 Dec 1;67(16):1781-90. doi: 10.1002/pros.20665.
100 Bone Metastasis of Prostate Cancer Can Be Therapeutically Targeted at the TBX2-WNT Signaling Axis.Cancer Res. 2017 Mar 15;77(6):1331-1344. doi: 10.1158/0008-5472.CAN-16-0497. Epub 2017 Jan 20.
101 Human prostate-specific transglutaminase gene: promoter cloning, tissue-specific expression, and down-regulation in metastatic prostate cancer.Urology. 1999 Dec;54(6):1105-11. doi: 10.1016/s0090-4295(99)00298-8.
102 TRAF2 is a Valuable Prognostic Biomarker in Patients with Prostate Cancer.Med Sci Monit. 2017 Aug 31;23:4192-4204. doi: 10.12659/msm.903500.
103 TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis.J Clin Invest. 2018 Jul 2;128(7):3129-3143. doi: 10.1172/JCI96060. Epub 2018 Jun 18.
104 Expression of TRAP1 predicts poor survival of malignant glioma patients.J Mol Neurosci. 2015 Jan;55(1):62-68. doi: 10.1007/s12031-014-0413-5. Epub 2014 Sep 5.