General Information of Drug Off-Target (DOT) (ID: OTKAGZY3)

DOT Name S-adenosylmethionine decarboxylase proenzyme (AMD1)
Synonyms AdoMetDC; SAMDC; EC 4.1.1.50
Gene Name AMD1
UniProt ID
DCAM_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1I72; 1I79; 1I7B; 1I7C; 1I7M; 1JEN; 1JL0; 1MSV; 3DZ2; 3DZ3; 3DZ4; 3DZ5; 3DZ6; 3DZ7; 3EP3; 3EP4; 3EP5; 3EP6; 3EP7; 3EP8; 3EP9; 3EPA; 3EPB; 3H0V; 3H0W
EC Number
4.1.1.50
Pfam ID
PF01536
Sequence
MEAAHFFEGTEKLLEVWFSRQQPDANQGSGDLRTIPRSEWDILLKDVQCSIISVTKTDKQ
EAYVLSESSMFVSKRRFILKTCGTTLLLKALVPLLKLARDYSGFDSIQSFFYSRKNFMKP
SHQGYPHRNFQEEIEFLNAIFPNGAAYCMGRMNSDCWYLYTLDFPESRVISQPDQTLEIL
MSELDPAVMDQFYMKDGVTAKDVTRESGIRDLIPGSVIDATMFNPCGYSMNGMKSDGTYW
TIHITPEPEFSYVSFETNLSQTSYDDLIRKVVEVFKPGKFVTTLFVNQSSKCRTVLASPQ
KIEGFKRLDCQSAMFNDYNFVFTSFAKKQQQQQS
Function Essential for biosynthesis of the polyamines spermidine and spermine. Promotes maintenance and self-renewal of embryonic stem cells, by maintaining spermine levels.
KEGG Pathway
Cysteine and methionine metabolism (hsa00270 )
Arginine and proline metabolism (hsa00330 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Metabolism of polyamines (R-HSA-351202 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Ifosfamide DMCT3I8 Approved S-adenosylmethionine decarboxylase proenzyme (AMD1) increases the Metabolic disorder ADR of Ifosfamide. [19]
Chlorpromazine DMBGZI3 Phase 3 Trial S-adenosylmethionine decarboxylase proenzyme (AMD1) increases the Metabolic disorder ADR of Chlorpromazine. [19]
------------------------------------------------------------------------------------
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [1]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [8]
Marinol DM70IK5 Approved Marinol decreases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [9]
Nicotine DMWX5CO Approved Nicotine increases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [10]
Indomethacin DMSC4A7 Approved Indomethacin decreases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [11]
Bicalutamide DMZMSPF Approved Bicalutamide increases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [12]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the activity of S-adenosylmethionine decarboxylase proenzyme (AMD1). [13]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [3]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [16]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [17]
Rutin DMEHRAJ Investigative Rutin decreases the expression of S-adenosylmethionine decarboxylase proenzyme (AMD1). [18]
Piceatannol DMYOP45 Investigative Piceatannol decreases the activity of S-adenosylmethionine decarboxylase proenzyme (AMD1). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the methylation of S-adenosylmethionine decarboxylase proenzyme (AMD1). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of S-adenosylmethionine decarboxylase proenzyme (AMD1). [14]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
3 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer. 2014 Apr 23;14:283.
8 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
9 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
10 Nicotinic modulation of gene expression in SH-SY5Y neuroblastoma cells. Brain Res. 2006 Oct 20;1116(1):39-49.
11 Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006 Sep;8(9):758-71.
12 Casodex treatment induces hypoxia-related gene expression in the LNCaP prostate cancer progression model. BMC Urol. 2005 Mar 24;5:5.
13 Resveratrol-induced modification of polyamine metabolism is accompanied by induction of c-Fos. Carcinogenesis. 2003 Mar;24(3):469-74. doi: 10.1093/carcin/24.3.469.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
16 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
17 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
18 Combination of metabolomics and network pharmacology analysis to decipher the mechanisms of total flavonoids of Litchi seed against prostate cancer. J Pharm Pharmacol. 2023 Jul 5;75(7):951-968. doi: 10.1093/jpp/rgad035.
19 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.