General Information of Drug Off-Target (DOT) (ID: OTMOGNCV)

DOT Name Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2)
Gene Name ANKMY2
UniProt ID
ANKY2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF12796 ; PF01753
Sequence
MVHIKKGELTQEEKELLEVIGKGTVQEAGTLLSSKNVRVNCLDENGMTPLMHAAYKGKLD
MCKLLLRHGADVNCHQHEHGYTALMFAALSGNKDITWVMLEAGAETDVVNSVGRTAAQMA
AFVGQHDCVTIINNFFPRERLDYYTKPQGLDKEPKLPPKLAGPLHKIITTTNLHPVKIVM
LVNENPLLTEEAALNKCYRVMDLICEKCMKQRDMNEVLAMKMHYISCIFQKCINFLKDGE
NKLDTLIKSLLKGRASDGFPVYQEKIIRESIRKFPYCEATLLQQLVRSIAPVEIGSDPTA
FSVLTQAITGQVGFVDVEFCTTCGEKGASKRCSVCKMVIYCDQTCQKTHWFTHKKICKNL
KDIYEKQQLEAAKEKRQEENHGKLDVNSNCVNEEQPEAEVGISQKDSNPEDSGEGKKESL
ESEAELEGLQDAPAGPQVSEE
Function May be involved in the trafficking of signaling proteins to the cilia.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [1]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [9]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [10]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [11]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [12]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Ankyrin repeat and MYND domain-containing protein 2 (ANKMY2). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
7 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
11 A genomic approach to predict synergistic combinations for breast cancer treatment. Pharmacogenomics J. 2013 Feb;13(1):94-104. doi: 10.1038/tpj.2011.48. Epub 2011 Nov 15.
12 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
13 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
14 Label-free quantitative proteomic analysis identifies the oncogenic role of FOXA1 in BaP-transformed 16HBE cells. Toxicol Appl Pharmacol. 2020 Sep 15;403:115160. doi: 10.1016/j.taap.2020.115160. Epub 2020 Jul 25.
15 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.