General Information of Drug Off-Target (DOT) (ID: OTNFB9YN)

DOT Name Inositol monophosphatase 2 (IMPA2)
Synonyms IMP 2; IMPase 2; EC 3.1.3.25; Inositol-1(or 4)-monophosphatase 2; Myo-inositol monophosphatase A2
Gene Name IMPA2
UniProt ID
IMPA2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2CZH; 2CZI; 2CZK; 2DDK; 2FVZ
EC Number
3.1.3.25
Pfam ID
PF00459
Sequence
MKPSGEDQAALAAGPWEECFQAAVQLALRAGQIIRKALTEEKRVSTKTSAADLVTETDHL
VEDLIISELRERFPSHRFIAEEAAASGAKCVLTHSPTWIIDPIDGTCNFVHRFPTVAVSI
GFAVRQELEFGVIYHCTEERLYTGRRGRGAFCNGQRLRVSGETDLSKALVLTEIGPKRDP
ATLKLFLSNMERLLHAKAHGVRVIGSSTLALCHLASGAADAYYQFGLHCWDLAAATVIIR
EAGGIVIDTSGGPLDLMACRVVAASTREMAMLIAQALQTINYGRDDEK
Function
Can use myo-inositol monophosphates, scylloinositol 1,4-diphosphate, glucose-1-phosphate, beta-glycerophosphate, and 2'-AMP as substrates. Has been implicated as the pharmacological target for lithium Li(+) action in brain.
KEGG Pathway
Inositol phosphate metabolism (hsa00562 )
Metabolic pathways (hsa01100 )
Phosphatidylinositol sig.ling system (hsa04070 )
Reactome Pathway
Synthesis of IP2, IP, and Ins in the cytosol (R-HSA-1855183 )
BioCyc Pathway
MetaCyc:HS06822-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitomycin DMH0ZJE Approved Inositol monophosphatase 2 (IMPA2) affects the response to substance of Mitomycin. [20]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Inositol monophosphatase 2 (IMPA2). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Inositol monophosphatase 2 (IMPA2). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Inositol monophosphatase 2 (IMPA2). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Inositol monophosphatase 2 (IMPA2). [4]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Inositol monophosphatase 2 (IMPA2). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Inositol monophosphatase 2 (IMPA2). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Inositol monophosphatase 2 (IMPA2). [7]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Inositol monophosphatase 2 (IMPA2). [8]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Inositol monophosphatase 2 (IMPA2). [9]
Progesterone DMUY35B Approved Progesterone increases the expression of Inositol monophosphatase 2 (IMPA2). [10]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Inositol monophosphatase 2 (IMPA2). [11]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Inositol monophosphatase 2 (IMPA2). [12]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Inositol monophosphatase 2 (IMPA2). [13]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Inositol monophosphatase 2 (IMPA2). [14]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Inositol monophosphatase 2 (IMPA2). [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Inositol monophosphatase 2 (IMPA2). [16]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Inositol monophosphatase 2 (IMPA2). [17]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Inositol monophosphatase 2 (IMPA2). [12]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Inositol monophosphatase 2 (IMPA2). [18]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Inositol monophosphatase 2 (IMPA2). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 A comprehensive analysis of Wnt/beta-catenin signaling pathway-related genes and crosstalk pathways in the treatment of As2O3 in renal cancer. Ren Fail. 2018 Nov;40(1):331-339.
9 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
10 Unique transcriptome, pathways, and networks in the human endometrial fibroblast response to progesterone in endometriosis. Biol Reprod. 2011 Apr;84(4):801-15.
11 Pharmacogenomic identification of novel determinants of response to chemotherapy in colon cancer. Cancer Res. 2006 Mar 1;66(5):2765-77.
12 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
13 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
14 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
15 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
16 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
17 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
18 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
19 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
20 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.