General Information of Drug Off-Target (DOT) (ID: OTO2P28B)

DOT Name Terminal nucleotidyltransferase 5B (TENT5B)
Synonyms EC 2.7.7.19; Non-canonical poly(A) polymerase FAM46B
Gene Name TENT5B
Related Disease
Advanced cancer ( )
Neoplasm ( )
Prostate cancer ( )
Prostate carcinoma ( )
UniProt ID
TET5B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.7.7.19
Pfam ID
PF07984
Sequence
MMPSESGAERRDRAAAQVGTAAATAVATAAPAGGGPDPEALSAFPGRHLSGLSWPQVKRL
DALLSEPIPIHGRGNFPTLSVQPRQIVQVVRSTLEEQGLHVHSVRLHGSAASHVLHPESG
LGYKDLDLVFRVDLRSEASFQLTKAVVLACLLDFLPAGVSRAKITPLTLKEAYVQKLVKV
CTDSDRWSLISLSNKSGKNVELKFVDSVRRQFEFSIDSFQIILDSLLLFGQCSSTPMSEA
FHPTVTGESLYGDFTEALEHLRHRVIATRSPEEIRGGGLLKYCHLLVRGFRPRPSTDVRA
LQRYMCSRFFIDFPDLVEQRRTLERYLEAHFGGADAARRYACLVTLHRVVNESTVCLMNH
ERRQTLDLIAALALQALAEQGPAATAALAWRPPGTDGVVPATVNYYVTPVQPLLAHAYPT
WLPCN
Function
Catalyzes the transfer of one adenosine molecule from an ATP to an mRNA poly(A) tail bearing a 3'-OH terminal group in an ATP hydrolysis-dependent manner. May be involved in maintaining the translation efficiency of at least some genes through preventing degradation of their mRNAs. Prefers RNA molecules that are adenosine-rich close to 3'-end. In addition, may inhibit cell proliferation and cell cycle progression through ubiquitination of beta-catenin/CTNNB1.

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Altered Expression [1]
Neoplasm DISZKGEW Strong Altered Expression [1]
Prostate cancer DISF190Y Strong Altered Expression [1]
Prostate carcinoma DISMJPLE Strong Altered Expression [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [4]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [5]
Quercetin DM3NC4M Approved Quercetin increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [7]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [8]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [9]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [11]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [12]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [14]
Mivebresib DMCPF90 Phase 1 Mivebresib increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [17]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [18]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Terminal nucleotidyltransferase 5B (TENT5B). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Terminal nucleotidyltransferase 5B (TENT5B). [10]
------------------------------------------------------------------------------------

References

1 FAM46B inhibits cell proliferation and cell cycle progression in prostate cancer through ubiquitination of -catenin.Exp Mol Med. 2018 Dec 10;50(12):1-12. doi: 10.1038/s12276-018-0184-0.
2 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
8 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
11 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
12 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
13 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
14 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
15 Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One. 2022 Apr 29;17(4):e0266966. doi: 10.1371/journal.pone.0266966. eCollection 2022.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
18 Identification of gene markers for formaldehyde exposure in humans. Environ Health Perspect. 2007 Oct;115(10):1460-6. doi: 10.1289/ehp.10180.
19 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.