General Information of Drug Off-Target (DOT) (ID: OTOA9232)

DOT Name Mitochondrial ornithine transporter 1 (SLC25A15)
Synonyms Solute carrier family 25 member 15
Gene Name SLC25A15
Related Disease
Ornithine translocase deficiency ( )
UniProt ID
ORNT1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00153
Sequence
MKSNPAIQAAIDLTAGAAGGTACVLTGQPFDTMKVKMQTFPDLYRGLTDCCLKTYSQVGF
RGFYKGTSPALIANIAENSVLFMCYGFCQQVVRKVAGLDKQAKLSDLQNAAAGSFASAFA
ALVLCPTELVKCRLQTMYEMETSGKIAKSQNTVWSVIKSILRKDGPLGFYHGLSSTLLRE
VPGYFFFFGGYELSRSFFASGRSKDELGPVPLMLSGGVGGICLWLAVYPVDCIKSRIQVL
SMSGKQAGFIRTFINVVKNEGITALYSGLKPTMIRAFPANGALFLAYEYSRKLMMNQLEA
Y
Function
Mitochondrial ornithine-citrulline antiporter (Probable). Catalyzes the exchange between cytosolic ornithine and mitochondrial citrulline plus an H(+), the proton compensates the positive charge of ornithine thus leading to an electroneutral transport. Plays a crucial role in the urea cycle, by connecting the cytosolic and the intramitochondrial reactions of the urea cycle (Probable). Lysine and arginine are also transported by the antiport mechanism (Probable). In addition, catalyzes an electroneutral exchange of ornithine or lysine for H(+), a reaction driven by the pH gradient across the inner membrane.
Tissue Specificity Highly expressed in liver, pancreas, testis, lung and small intestine. Lower levels are detected in spleen, kidney, brain and heart.
Reactome Pathway
Urea cycle (R-HSA-70635 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Ornithine translocase deficiency DISITN7S Definitive Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Mitochondrial ornithine transporter 1 (SLC25A15). [2]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Mitochondrial ornithine transporter 1 (SLC25A15). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Mitochondrial ornithine transporter 1 (SLC25A15). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Mitochondrial ornithine transporter 1 (SLC25A15). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Mitochondrial ornithine transporter 1 (SLC25A15). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Mitochondrial ornithine transporter 1 (SLC25A15). [7]
Carbamazepine DMZOLBI Approved Carbamazepine increases the expression of Mitochondrial ornithine transporter 1 (SLC25A15). [8]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Mitochondrial ornithine transporter 1 (SLC25A15). [9]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Mitochondrial ornithine transporter 1 (SLC25A15). [10]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Mitochondrial ornithine transporter 1 (SLC25A15). [11]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Mitochondrial ornithine transporter 1 (SLC25A15). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
8 Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin Pharmacol Ther. 2006 Nov;80(5):440-456.
9 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
12 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.