General Information of Drug Off-Target (DOT) (ID: OTP1L0BZ)

DOT Name Carotenoid-cleaving dioxygenase, mitochondrial (BCO2)
Synonyms EC 1.13.11.-; EC 1.13.11.71; B-diox-II; Beta,beta-carotene 9',10'-oxygenase; Beta-carotene dioxygenase 2
Gene Name BCO2
Related Disease
Epilepsy ( )
Fatty liver disease ( )
Hepatocellular carcinoma ( )
Metabolic disorder ( )
Prostate cancer ( )
Prostate carcinoma ( )
Non-alcoholic fatty liver disease ( )
Vitamin A deficiency ( )
Advanced cancer ( )
Neoplasm ( )
UniProt ID
BCDO2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.13.11.-; 1.13.11.71
Pfam ID
PF03055
Sequence
MFFRVFLHFIRSHSATAVDFLPVMVHRLPVFKRYMGNTPQKKAVFGQCRGLPCVAPLLTT
VEEAPRGISARVWGHFPKWLNGSLLRIGPGKFEFGKDKYNHWFDGMALLHQFRMAKGTVT
YRSKFLQSDTYKANSAKNRIVISEFGTLALPDPCKNVFERFMSRFELPGKAAAMTDNTNV
NYVRYKGDYYLCTETNFMNKVDIETLEKTEKVDWSKFIAVNGATAHPHYDLDGTAYNMGN
SFGPYGFSYKVIRVPPEKVDLGETIHGVQVICSIASTEKGKPSYYHSFGMTRNYIIFIEQ
PLKMNLWKIATSKIRGKAFSDGISWEPQCNTRFHVVEKRTGQLLPGRYYSKPFVTFHQIN
AFEDQGCVIIDLCCQDNGRTLEVYQLQNLRKAGEGLDQVHNSAAKSFPRRFVLPLNVSLN
APEGDNLSPLSYTSASAVKQADGTIWCSHENLHQEDLEKEGGIEFPQIYYDRFSGKKYHF
FYGCGFRHLVGDSLIKVDVVNKTLKVWREDGFYPSEPVFVPAPGTNEEDGGVILSVVITP
NQNESNFILVLDAKNFEELGRAEVPVQMPYGFHGTFIPI
Function
Broad specificity mitochondrial dioxygenase that mediates the asymmetric oxidative cleavage of carotenoids. Cleaves carotenes (pure hydrocarbon carotenoids) such as all-trans-beta-carotene and lycopene as well as xanthophylls (oxygenated carotenoids) such as zeaxanthin, lutein and beta-cryptoxanthin at both the 9,10 and the 9',10' carbon-carbon double bond. Through its function in carotenoids metabolism regulates oxidative stress and the production of important signaling molecules.
Tissue Specificity Highly expressed in retinal pigment epithelium. Also expressed in stomach, small intestine, liver, testis, kidney, adrenal gland, pancreas, heart, skeletal muscle and prostate (at protein level).
Reactome Pathway
Retinoid metabolism and transport (R-HSA-975634 )
BioCyc Pathway
MetaCyc:G66-33846-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Epilepsy DISBB28L Strong Genetic Variation [1]
Fatty liver disease DIS485QZ Strong Altered Expression [2]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [3]
Metabolic disorder DIS71G5H Strong Biomarker [4]
Prostate cancer DISF190Y Strong Genetic Variation [5]
Prostate carcinoma DISMJPLE Strong Genetic Variation [5]
Non-alcoholic fatty liver disease DISDG1NL Disputed Biomarker [6]
Vitamin A deficiency DISBEPZO Disputed Biomarker [7]
Advanced cancer DISAT1Z9 Limited Biomarker [8]
Neoplasm DISZKGEW Limited Biomarker [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Carotenoid-cleaving dioxygenase, mitochondrial (BCO2). [9]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Carotenoid-cleaving dioxygenase, mitochondrial (BCO2). [14]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Carotenoid-cleaving dioxygenase, mitochondrial (BCO2). [10]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Carotenoid-cleaving dioxygenase, mitochondrial (BCO2). [11]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Carotenoid-cleaving dioxygenase, mitochondrial (BCO2). [12]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Carotenoid-cleaving dioxygenase, mitochondrial (BCO2). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Carotenoid-cleaving dioxygenase, mitochondrial (BCO2). [15]
------------------------------------------------------------------------------------

References

1 A genome-wide association study of sodium levels and drug metabolism in an epilepsy cohort treated with carbamazepine and oxcarbazepine.Epilepsia Open. 2019 Jan 17;4(1):102-109. doi: 10.1002/epi4.12297. eCollection 2019 Mar.
2 Tomato Powder Inhibits Hepatic Steatosis and Inflammation Potentially Through Restoring SIRT1 Activity and Adiponectin Function Independent of Carotenoid Cleavage Enzymes in Mice.Mol Nutr Food Res. 2018 Apr;62(8):e1700738. doi: 10.1002/mnfr.201700738. Epub 2018 Mar 22.
3 Comprehensive characterization of cancer genes in hepatocellular carcinoma genomes.Oncol Lett. 2018 Feb;15(2):1503-1510. doi: 10.3892/ol.2017.7521. Epub 2017 Dec 5.
4 Ablation of ,-carotene-9',10'-oxygenase 2 remodels the hypothalamic metabolome leading to metabolic disorders in mice.J Nutr Biochem. 2017 Aug;46:74-82. doi: 10.1016/j.jnutbio.2017.02.019. Epub 2017 Apr 12.
5 -Carotene 9',10' Oxygenase Modulates the Anticancer Activity of Dietary Tomato or Lycopene on Prostate Carcinogenesis in the TRAMP Model.Cancer Prev Res (Phila). 2017 Feb;10(2):161-169. doi: 10.1158/1940-6207.CAPR-15-0402. Epub 2016 Nov 2.
6 Dietary -Cryptoxanthin Inhibits High-Refined Carbohydrate Diet-Induced Fatty Liver via Differential Protective Mechanisms Depending on Carotenoid Cleavage Enzymes in Male Mice.J Nutr. 2019 Sep 1;149(9):1553-1564. doi: 10.1093/jn/nxz106.
7 -apo-10'-carotenoids support normal embryonic development during vitamin A deficiency.Sci Rep. 2018 Jun 11;8(1):8834. doi: 10.1038/s41598-018-27071-3.
8 Mitochondrial -Carotene 9',10' Oxygenase Modulates Prostate Cancer Growth via NF-B Inhibition: A Lycopene-Independent Function.Mol Cancer Res. 2016 Oct;14(10):966-975. doi: 10.1158/1541-7786.MCR-16-0075. Epub 2016 Jul 12.
9 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
10 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
11 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
12 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
13 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
14 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.