General Information of Drug Off-Target (DOT) (ID: OTPTLZJT)

DOT Name Bystin (BYSL)
Gene Name BYSL
Related Disease
B-cell lymphoma ( )
Breast cancer ( )
Breast carcinoma ( )
UniProt ID
BYST_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6G18; 6G4S; 6G4W; 7WTT; 7WTU; 7WTV; 7WTW; 7WTX; 7WTZ; 7WU0
Pfam ID
PF05291
Sequence
MPKFKAARGVGGQEKHAPLADQILAGNAVRAGVREKRRGRGTGEAEEEYVGPRLSRRILQ
QARQQQEELEAEHGTGDKPAAPRERTTRLGPRMPQDGSDDEDEEWPTLEKAATMTAAGHH
AEVVVDPEDERAIEMFMNKNPPARRTLADIIMEKLTEKQTEVETVMSEVSGFPMPQLDPR
VLEVYRGVREVLSKYRSGKLPKAFKIIPALSNWEQILYVTEPEAWTAAAMYQATRIFASN
LKERMAQRFYNLVLLPRVRDDVAEYKRLNFHLYMALKKALFKPGAWFKGILIPLCESGTC
TLREAIIVGSIITKCSIPVLHSSAAMLKIAEMEYSGANSIFLRLLLDKKYALPYRVLDAL
VFHFLGFRTEKRELPVLWHQCLLTLVQRYKADLATDQKEALLELLRLQPHPQLSPEIRRE
LQSAVPRDVEDVPITVE
Function Required for processing of 20S pre-rRNA precursor and biogenesis of 40S ribosomal subunits. May be required for trophinin-dependent regulation of cell adhesion during implantation of human embryos.
Tissue Specificity
Found in the placenta from the sixth week of pregnancy. Was localized in the cytoplasm of the syncytiotrophoblast in the chorionic villi and in endometrial decidual cells at the uteroplacental interface. After week 10, the level decreased and then disappeared from placental villi.
Reactome Pathway
Major pathway of rRNA processing in the nucleolus and cytosol (R-HSA-6791226 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
B-cell lymphoma DISIH1YQ Strong Biomarker [1]
Breast cancer DIS7DPX1 Strong Altered Expression [2]
Breast carcinoma DIS2UE88 Strong Altered Expression [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Bystin (BYSL). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Bystin (BYSL). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Bystin (BYSL). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Bystin (BYSL). [6]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Bystin (BYSL). [8]
Selenium DM25CGV Approved Selenium increases the expression of Bystin (BYSL). [9]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Bystin (BYSL). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Bystin (BYSL). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Bystin (BYSL). [3]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Bystin (BYSL). [12]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Bystin (BYSL). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Bystin (BYSL). [7]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Bystin (BYSL). [14]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid increases the phosphorylation of Bystin (BYSL). [15]
------------------------------------------------------------------------------------

References

1 Identification of CCND3 and BYSL as candidate targets for the 6p21 amplification in diffuse large B-cell lymphoma.Clin Cancer Res. 2005 Dec 1;11(23):8265-72. doi: 10.1158/1078-0432.CCR-05-1028.
2 Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells.Neoplasia. 2016 Feb;18(2):100-10. doi: 10.1016/j.neo.2016.01.001.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
5 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
8 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
9 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
10 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
14 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
15 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.