General Information of Drug Off-Target (DOT) (ID: OTQ3L42N)

DOT Name Inositol polyphosphate 5-phosphatase OCRL (OCRL)
Synonyms EC 3.1.3.36; EC 3.1.3.56; Inositol polyphosphate 5-phosphatase OCRL-1; OCRL-1; Lowe oculocerebrorenal syndrome protein; Phosphatidylinositol 3,4,5-triphosphate 5-phosphatase; EC 3.1.3.86
Gene Name OCRL
Related Disease
Dent disease type 2 ( )
Glaucoma/ocular hypertension ( )
Oculocerebrorenal syndrome ( )
Adult glioblastoma ( )
Autism ( )
Cataract ( )
Congenital glaucoma ( )
Dent disease ( )
Fanconi's anemia ( )
Glioblastoma multiforme ( )
Intellectual disability ( )
Kidney failure ( )
Listeriosis ( )
Nephrocalcinosis ( )
Osteoarthritis ( )
Primary Fanconi syndrome ( )
Subcortical band heterotopia ( )
Trichohepatoenteric syndrome ( )
Chronic kidney disease ( )
Cryptorchidism ( )
Dent disease type 1 ( )
X-linked intellectual disability ( )
UniProt ID
OCRL_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2KIE; 2QV2; 3QBT; 3QIS; 4CMN
EC Number
3.1.3.36; 3.1.3.56; 3.1.3.86
Pfam ID
PF21310 ; PF16726 ; PF00620
Sequence
MEPPLPVGAQPLATVEGMEMKGPLREPCALTLAQRNGQYELIIQLHEKEQHVQDIIPINS
HFRCVQEAEETLLIDIASNSGCKIRVQGDWIRERRFEIPDEEHCLKFLSAVLAAQKAQSQ
LLVPEQKDSSSWYQKLDTKDKPSVFSGLLGFEDNFSSMNLDKKINSQNQPTGIHREPPPP
PFSVNKMLPREKEASNKEQPKVTNTMRKLFVPNTQSGQREGLIKHILAKREKEYVNIQTF
RFFVGTWNVNGQSPDSGLEPWLNCDPNPPDIYCIGFQELDLSTEAFFYFESVKEQEWSMA
VERGLHSKAKYKKVQLVRLVGMMLLIFARKDQCRYIRDIATETVGTGIMGKMGNKGGVAV
RFVFHNTTFCIVNSHLAAHVEDFERRNQDYKDICARMSFVVPNQTLPQLNIMKHEVVIWL
GDLNYRLCMPDANEVKSLINKKDLQRLLKFDQLNIQRTQKKAFVDFNEGEIKFIPTYKYD
SKTDRWDSSGKCRVPAWCDRILWRGTNVNQLNYRSHMELKTSDHKPVSALFHIGVKVVDE
RRYRKVFEDSVRIMDRMENDFLPSLELSRREFVFENVKFRQLQKEKFQISNNGQVPCHFS
FIPKLNDSQYCKPWLRAEPFEGYLEPNETVDISLDVYVSKDSVTILNSGEDKIEDILVLH
LDRGKDYFLTISGNYLPSCFGTSLEALCRMKRPIREVPVTKLIDLEEDSFLEKEKSLLQM
VPLDEGASERPLQVPKEIWLLVDHLFKYACHQEDLFQTPGMQEELQQIIDCLDTSIPETI
PGSNHSVAEALLIFLEALPEPVICYELYQRCLDSAYDPRICRQVISQLPRCHRNVFRYLM
AFLRELLKFSEYNSVNANMIATLFTSLLLRPPPNLMARQTPSDRQRAIQFLLGFLLGSEE
D
Function
Catalyzes the hydrolysis of the 5-position phosphate of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol-3,4,5-bisphosphate (PtdIns(3,4,5)P3), with the greatest catalytic activity towards PtdIns(4,5)P2. Able also to hydrolyze the 5-phosphate of inositol 1,4,5-trisphosphate and of inositol 1,3,4,5-tetrakisphosphate. Regulates traffic in the endosomal pathway by regulating the specific pool of phosphatidylinositol 4,5-bisphosphate that is associated with endosomes. Involved in primary cilia assembly. Acts as a regulator of phagocytosis, hydrolyzing PtdIns(4,5)P2 to promote phagosome closure, through attenuation of PI3K signaling.
Tissue Specificity Brain, skeletal muscle, heart, kidney, lung, placenta and fibroblasts. Expressed in the retina and the retinal pigment epithelium.
KEGG Pathway
Inositol phosphate metabolism (hsa00562 )
Metabolic pathways (hsa01100 )
Phosphatidylinositol sig.ling system (hsa04070 )
Reactome Pathway
Synthesis of PIPs at the Golgi membrane (R-HSA-1660514 )
Synthesis of IP2, IP, and Ins in the cytosol (R-HSA-1855183 )
Synthesis of IP3 and IP4 in the cytosol (R-HSA-1855204 )
Golgi Associated Vesicle Biogenesis (R-HSA-432722 )
Clathrin-mediated endocytosis (R-HSA-8856828 )
RHOJ GTPase cycle (R-HSA-9013409 )
RAC3 GTPase cycle (R-HSA-9013423 )
Synthesis of PIPs at the plasma membrane (R-HSA-1660499 )
BioCyc Pathway
MetaCyc:HS04546-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

22 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Dent disease type 2 DISJFNHL Definitive X-linked [1]
Glaucoma/ocular hypertension DISLBXBY Definitive Biomarker [2]
Oculocerebrorenal syndrome DIS8TEDY Definitive X-linked [3]
Adult glioblastoma DISVP4LU Strong Altered Expression [4]
Autism DISV4V1Z Strong Biomarker [5]
Cataract DISUD7SL Strong Genetic Variation [6]
Congenital glaucoma DISHN3GO Strong Genetic Variation [7]
Dent disease DISRDLFN Strong Genetic Variation [8]
Fanconi's anemia DISGW6Q8 Strong Genetic Variation [9]
Glioblastoma multiforme DISK8246 Strong Altered Expression [4]
Intellectual disability DISMBNXP Strong Biomarker [10]
Kidney failure DISOVQ9P Strong Genetic Variation [11]
Listeriosis DISKMQBM Strong Biomarker [12]
Nephrocalcinosis DIS5ZVJP Strong Genetic Variation [13]
Osteoarthritis DIS05URM Strong Biomarker [14]
Primary Fanconi syndrome DISR144Y Strong Genetic Variation [9]
Subcortical band heterotopia DISHN7JS Strong Genetic Variation [15]
Trichohepatoenteric syndrome DISL3ODF Strong Genetic Variation [16]
Chronic kidney disease DISW82R7 moderate Genetic Variation [17]
Cryptorchidism DISYUD2P moderate Altered Expression [18]
Dent disease type 1 DISNGJIQ Limited Genetic Variation [19]
X-linked intellectual disability DISYJBY3 Limited Genetic Variation [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Inositol polyphosphate 5-phosphatase OCRL (OCRL). [21]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Inositol polyphosphate 5-phosphatase OCRL (OCRL). [22]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Inositol polyphosphate 5-phosphatase OCRL (OCRL). [23]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Inositol polyphosphate 5-phosphatase OCRL (OCRL). [25]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Inositol polyphosphate 5-phosphatase OCRL (OCRL). [26]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Inositol polyphosphate 5-phosphatase OCRL (OCRL). [28]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Inositol polyphosphate 5-phosphatase OCRL (OCRL). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Inositol polyphosphate 5-phosphatase OCRL (OCRL). [24]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Inositol polyphosphate 5-phosphatase OCRL (OCRL). [27]
------------------------------------------------------------------------------------

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Compensatory Role of Inositol 5-Phosphatase INPP5B to OCRL in Primary Cilia Formation in Oculocerebrorenal Syndrome of Lowe.PLoS One. 2013 Jun 21;8(6):e66727. doi: 10.1371/journal.pone.0066727. Print 2013.
3 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
4 Lipid phosphatases SKIP and SHIP2 regulate fibronectin-dependent cell migration in glioblastoma.FEBS J. 2019 Mar;286(6):1120-1135. doi: 10.1111/febs.14769. Epub 2019 Feb 16.
5 Duplication of OCRL and adjacent genes associated with autism but not Lowe syndrome.Am J Med Genet A. 2012 Oct;158A(10):2602-5. doi: 10.1002/ajmg.a.35566. Epub 2012 Sep 10.
6 Prevalence of Congenital Ocular Anomalies among Children with Genetic Disorders: An Egyptian Study.Semin Ophthalmol. 2018;33(5):613-619. doi: 10.1080/08820538.2017.1375124. Epub 2017 Oct 9.
7 Ocular Pathology of Oculocerebrorenal Syndrome of Lowe: Novel Mutations and Genotype-Phenotype Analysis.Sci Rep. 2017 May 4;7(1):1442. doi: 10.1038/s41598-017-01447-3.
8 Genetic Analysis of Dent's Disease and Functional Research of CLCN5 Mutations.DNA Cell Biol. 2017 Dec;36(12):1151-1158. doi: 10.1089/dna.2017.3731. Epub 2017 Oct 23.
9 A role for OCRL in glomerular function and disease.Pediatr Nephrol. 2020 Apr;35(4):641-648. doi: 10.1007/s00467-019-04317-4. Epub 2019 Dec 6.
10 OCRL deficiency impairs endolysosomal function in a humanized mouse model for Lowe syndrome and Dent disease.Hum Mol Genet. 2019 Jun 15;28(12):1931-1946. doi: 10.1093/hmg/ddy449.
11 Lowe Syndrome protein OCRL1 supports maturation of polarized epithelial cells.PLoS One. 2011;6(8):e24044. doi: 10.1371/journal.pone.0024044. Epub 2011 Aug 25.
12 Phosphatidylinositol 5-phosphatase oculocerebrorenal syndrome of Lowe protein (OCRL) controls actin dynamics during early steps of Listeria monocytogenes infection.J Biol Chem. 2012 Apr 13;287(16):13128-36. doi: 10.1074/jbc.M111.315788. Epub 2012 Feb 18.
13 Renal phenotype in Lowe Syndrome: a selective proximal tubular dysfunction.Clin J Am Soc Nephrol. 2008 Sep;3(5):1430-6. doi: 10.2215/CJN.00520108. Epub 2008 May 14.
14 Down-regulation of Rac GTPase-activating protein OCRL1 causes aberrant activation of Rac1 in osteoarthritis development.Arthritis Rheumatol. 2015 May;67(8):2154-63. doi: 10.1002/art.39174.
15 Pigmentary mosaicism, subcortical band heterotopia, and brain cystic lesions.Pediatr Neurol. 2009 May;40(5):383-6. doi: 10.1016/j.pediatrneurol.2008.11.006.
16 A novel pathogenic DNA variation in the OCRL1 gene in Lowe syndrome.J Clin Res Pediatr Endocrinol. 2011;3(1):29-31. doi: 10.4274/jcrpe.v3i1.06. Epub 2011 Feb 23.
17 Long-term renal outcome in children with OCRL mutations: retrospective analysis of a large international cohort.Nephrol Dial Transplant. 2018 Jan 1;33(1):85-94. doi: 10.1093/ndt/gfw350.
18 Renal manifestations of Dent disease and Lowe syndrome.Pediatr Nephrol. 2008 Feb;23(2):243-9. doi: 10.1007/s00467-007-0686-9. Epub 2007 Nov 24.
19 Muscle involvement in Dent disease 2.Pediatr Nephrol. 2014 Nov;29(11):2127-32. doi: 10.1007/s00467-014-2841-4. Epub 2014 Jun 7.
20 Lowe syndrome protein OCRL1 interacts with Rac GTPase in the trans-Golgi network.Hum Mol Genet. 2003 Oct 1;12(19):2449-56. doi: 10.1093/hmg/ddg250. Epub 2003 Jul 29.
21 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
22 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
23 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
24 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
25 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
26 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
27 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
28 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
29 Isobaric tags for relative and absolute quantitation-based proteomics analysis of the effect of ginger oil on bisphenol A-induced breast cancer cell proliferation. Oncol Lett. 2021 Feb;21(2):101. doi: 10.3892/ol.2020.12362. Epub 2020 Dec 8.