General Information of Disease (ID: DISLBXBY)

Disease Name Glaucoma/ocular hypertension
Disease Class 9C61: Glaucoma
Disease Hierarchy
DIS01GPL: Grass pollen hypersensitivity
DISLBXBY: Glaucoma/ocular hypertension
ICD Code
ICD-11
ICD-11: 9C61
Disease Identifiers
MONDO ID
MONDO_0005041
MESH ID
D005901
UMLS CUI
C0017601
MedGen ID
42224
HPO ID
HP:0000501
SNOMED CT ID
23986001

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 20 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
ACECLIDINE DMOLNCZ Approved Small molecular drug [1]
Acetazolamide DM1AF5U Approved Small molecular drug [2]
Befunolol hci DM8WCXM Approved Small molecular drug [3]
Bimatoprost DMX0E5B Approved Small molecular drug [4]
Brimonidine DMQLT4N Approved Small molecular drug [3]
Bunazosin DM4I8O7 Approved Small molecular drug [3]
Carbachol DMX9K8F Approved Small molecular drug [5]
Carteolol DMFMDOB Approved Small molecular drug [3]
Dapiprazole DMOXJKF Approved Small molecular drug [3]
Ethoxzolamide DMVO4ED Approved Small molecular drug [6]
Isoflurophate DMBSK7X Approved Small molecular drug [7]
Latanoprost DMI5OXG Approved Small molecular drug [8]
Methazolamide DM7J2TA Approved Small molecular drug [9]
Netarsudil DM0LPI9 Approved NA [10]
Omidenepag isopropyl DMUX7Z8 Approved NA [11]
Pilocarpine DMV9ADG Approved Small molecular drug [12]
Sodium Monofluorophosphate DM7DHEW Approved Small molecular drug [3]
Tafluprost DMFC41K Approved Small molecular drug [13]
Unoprostone DMXNR04 Approved Small molecular drug [3]
Unoprostone isopropyl ester DMB1QEV Approved Small molecular drug [3]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)
This Disease is Treated as An Indication in 25 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
AR-13165 DMS455G Phase 3 NA [14]
PGF2ALPHA-IE DM5DAP3 Phase 3 Small molecular drug [15]
QPI-1007 DMUWXEB Phase 3 siRNA drug [16]
Roclatan DMVQ5X1 Phase 3 NA [17]
Aganepag isopropyl DMRNDTT Phase 2 Small molecular drug [18]
AMA-76 DMBWNX5 Phase 2 NA [19]
AR-12286 DM5TC43 Phase 2 NA [20]
Bamosiran DM0TZEP Phase 2 Small interfering RNA [21]
BVT.28949 DM8CWL0 Phase 2 NA [22]
NT-501 ECT DMKSPDD Phase 2 Cell therapy [23]
ONO-9054 DM5O6GC Phase 2 NA [24]
SR-43845 DMTOCIV Phase 2 Small molecular drug [25]
Taprenepag DM1TSHL Phase 2 Small molecular drug [26]
Travoprost punctal plug DMB98Y7 Phase 2 NA [27]
VISION 5 DMUY2AP Phase 2 NA [28]
INO-8875 DMKNA94 Phase 1/2 NA [29]
LX-7101 DM2LYIN Phase 1/2 NA [30]
OPA-6566 DMELJIV Phase 1/2 NA [31]
QLT-091568 DM2CDLS Phase 1/2 NA [32]
Y-39983 DMXSEHF Phase 1/2 Small molecular drug [33]
AC-262271 DM36WTQ Phase 1 NA [34]
ALO-1567 DMGFVYL Phase 1 Small molecular drug [35]
CBT-101 DMOTLN4 Phase 1 NA [36]
INS-117548 DMA46DO Phase 1 NA [37]
Latrunculin B DM2XC05 Phase 1 Small molecular drug [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Drug(s)
This Disease is Treated as An Indication in 12 Discontinued Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
TRIMOPROSTIL DM8NPBQ Discontinued in Phase 3 Small molecular drug [39]
Adaprolol maleate-SME DMTOCV7 Discontinued in Phase 2 NA [40]
ALPRENOXIME HYDROCHLORIDE DMIKLRN Discontinued in Phase 2 Small molecular drug [41]
Enalkiren DMDAS5B Discontinued in Phase 2 Small molecular drug [42]
PROXODOLOL DM8U3R6 Discontinued in Phase 2 Small molecular drug [43]
S-1033 DMDEHNU Discontinued in Phase 2 NA [44]
IGANIDIPINE HYDROCHLORIDE DMP8MBW Discontinued in Phase 1 Small molecular drug [45]
SDZ-GLC-756 DM1C0K4 Discontinued in Phase 1 Small molecular drug [46]
A-75169 DMPX37E Terminated NA [49]
Apolipoprotein E DMIYTPE Terminated NA [50]
H-216/44 DM904UQ Terminated Small molecular drug [51]
KRG-3332 DMXT2SL Terminated NA [52]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
This Disease is Treated as An Indication in 2 Preclinical Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Neurosolve DMU9RB0 Preclinical NA [47]
PYM-50018 DMI049M Preclinical NA [48]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 21 Investigative Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
ACN-1052 DM3E4QR Investigative NA [53]
ALT-022 DMK2OTX Investigative NA [54]
AP-022 DM17JA7 Investigative NA [54]
ATS-907 DMHEK4U Investigative NA [55]
CERE-140 DMRX50G Investigative NA [54]
EDP-22 DMR8BSU Investigative NA [54]
IDV-007 DM9IKH4 Investigative NA [54]
ISV-215 DMWWVBH Investigative NA [54]
L-693612 DMMUYHX Investigative Small molecular drug [56]
MIM-A2 DMY2J9I Investigative NA [54]
MystiLol DMGJYIZ Investigative NA [57]
NCX-125 DMYBWXR Investigative NA [58]
OT-440 DMCXZLB Investigative NA [54]
PF-04475270 DMMHQL4 Investigative NA [59]
R-65 DMSHMIK Investigative NA [60]
SF-103 DM3T2FG Investigative NA [54]
SF-108 DM8TWJD Investigative NA [54]
SF-109 DMQZLF7 Investigative NA [54]
SF-116 DMRM58Y Investigative NA [54]
SMT-D003 DMFGAGI Investigative NA [54]
Very small embryonic-like stem cells DM3JHNG Investigative NA [54]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 74 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ALPI TTHYMUV Limited Biomarker [61]
APLNR TTJ8E43 Limited Biomarker [62]
CA12 TTSYM0R Limited Altered Expression [63]
CA2 TTANPDJ Limited Biomarker [64]
CACNA1C TTZIFHC Limited Genetic Variation [65]
CDC7 TTSMTDI Limited Biomarker [66]
CDKN2A TTFTWQ8 Limited Biomarker [67]
CHM TTOA18V Limited Biomarker [68]
CYP2J2 TTNE1C7 Limited Altered Expression [69]
EDN2 TTMR0OP Limited Biomarker [70]
EPHB6 TTZEMUY Limited Biomarker [71]
FANCF TTNZKFJ Limited Biomarker [72]
GJA1 TT4F7SL Limited Genetic Variation [73]
GJD2 TTOZAFI Limited Altered Expression [74]
GLA TTIS03D Limited Altered Expression [75]
GPRC5D TTHRAPJ Limited Altered Expression [76]
HCAR2 TTWNV8U Limited Biomarker [77]
HTR1A TTSQIFT Limited Biomarker [78]
ICA1 TTMX06B Limited Genetic Variation [79]
LINGO1 TTZYQ80 Limited Biomarker [80]
MAPK10 TT056SO Limited Biomarker [81]
MTNR1A TT0WAIE Limited Genetic Variation [82]
PKD2L1 TTAHD89 Limited Biomarker [83]
PRG4 TTSKF4V Limited Biomarker [84]
PTPRB TT64I9Q Limited Biomarker [85]
S1PR2 TTVSMOH Limited Biomarker [86]
SLC1A1 TTG2A6F Limited Genetic Variation [87]
SLC23A2 TTOP832 Limited Genetic Variation [88]
SLCO2A1 TTKVTQO Limited Genetic Variation [89]
TEK TT9VGXW Limited Biomarker [90]
TRPC5 TT32NQ1 Disputed Biomarker [91]
DDX58 TTVB0O3 moderate Genetic Variation [92]
MYLK TT18ETS moderate Biomarker [93]
TGFB2 TTI0KH6 moderate Genetic Variation [94]
ACE2 TTUI5H7 Strong Therapeutic [95]
AMD1 TTBFROQ Strong Biomarker [96]
BAX TTQ57WJ Strong Biomarker [97]
BECN1 TT5M7LN Strong Biomarker [98]
CDK9 TT1LVF2 Strong Biomarker [99]
CDKN1B TTLGFVW Strong Biomarker [100]
EDNRB TT3ZTGU Strong Biomarker [101]
EPO TTQG4NR Strong Biomarker [102]
EPOR TTAUX24 Strong Biomarker [102]
ETS1 TTTGPSD Strong Genetic Variation [103]
FOXC1 TTNT3YA Strong Genetic Variation [104]
GNAQ TTL1SRG Strong Genetic Variation [105]
HCAR1 TTVK4ZO Strong Biomarker [106]
IL20 TTNZMY2 Strong Altered Expression [107]
MAS1 TTOISYB Strong Therapeutic [95]
NGF TTDN3LF Strong Biomarker [108]
NGFR TTEDJN4 Strong Biomarker [109]
NTRK1 TTTDVOJ Strong Biomarker [109]
NTRK2 TTKN7QR Strong Biomarker [110]
P2RY6 TTNVSKA Strong Biomarker [111]
PDE7B TTWIEY9 Strong Genetic Variation [103]
PTGER2 TT1ZAVI Strong Biomarker [112]
PTGFR TTT2ZAR Strong Genetic Variation [89]
SIGMAR1 TT5TPI6 Strong Biomarker [113]
SLC1A3 TT8WRDA Strong Biomarker [114]
SNCG TT5TQNZ Strong Altered Expression [115]
SQSTM1 TTOT2RY Strong Genetic Variation [116]
TBK1 TTMP03S Strong Biomarker [90]
TRPM3 TTO3TD8 Strong Genetic Variation [117]
TXN TTZJ5U9 Strong Biomarker [118]
TXNIP TTTLDZK Strong Biomarker [119]
AHR TT037IE Definitive Biomarker [120]
ANGPT1 TTWNQ1T Definitive Biomarker [121]
ATR TT8ZYBQ Definitive Biomarker [122]
CACNA2D1 TTFK1JQ Definitive Biomarker [123]
LIMK1 TTWL9TY Definitive Biomarker [124]
NLRP3 TT4EN8X Definitive Biomarker [125]
NOD2 TTYPUHA Definitive Altered Expression [126]
P2RX7 TT473XN Definitive Biomarker [127]
RPGR TTHBDA9 Definitive Biomarker [90]
------------------------------------------------------------------------------------
⏷ Show the Full List of 74 DTT(s)
This Disease Is Related to 1 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC4A4 DTWDEIL Limited Genetic Variation [128]
------------------------------------------------------------------------------------
This Disease Is Related to 6 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
DHRS9 DEGTU5I Limited Altered Expression [129]
GSTT1 DE3PKUG Limited Genetic Variation [130]
HSD17B7 DEDMWFX Limited Altered Expression [131]
AKR1C4 DEAJN47 Strong Altered Expression [132]
GSTM1 DEYZEJA Strong Genetic Variation [130]
NMNAT3 DERBKPU Strong Therapeutic [133]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
This Disease Is Related to 167 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ADCY10 OTYSTB0R Limited Biomarker [77]
ANAPC1 OT2YY35L Limited Biomarker [134]
ARFGEF1 OTPAU0L4 Limited Biomarker [135]
ARID2 OTIRJXWM Limited Biomarker [135]
ASB10 OTYSZ9V6 Limited Biomarker [136]
B3GAT3 OTDSN5XF Limited Genetic Variation [137]
BBS5 OTFWF9N1 Limited Altered Expression [138]
BTC OTW4B2O0 Limited Altered Expression [139]
C4BPA OTHNH6Y8 Limited Biomarker [140]
CARD14 OTADQHOV Limited Biomarker [140]
CDKN2B OTAG24N1 Limited Genetic Variation [141]
CDSN OTQW4HV6 Limited Altered Expression [142]
CEBPD OTNBIPMY Limited Biomarker [143]
CLDN5 OTUX60YO Limited Biomarker [144]
COCH OTBEHD89 Limited Biomarker [145]
COL11A1 OTB0DRMS Limited Biomarker [146]
COL1A1 OTI31178 Limited Biomarker [147]
COL8A2 OTASWJ69 Limited Biomarker [148]
CPLANE1 OTXGGNNB Limited Biomarker [149]
CRYBB2 OTL0Z8E6 Limited Biomarker [150]
CXCL6 OTFTCQ4O Limited Altered Expression [138]
CYBA OT16N9ZO Limited Genetic Variation [151]
CYGB OTX153DQ Limited Biomarker [152]
DMXL1 OTWVL31L Limited Genetic Variation [153]
DNLZ OT48CG1W Limited Biomarker [71]
DOCK3 OTF3YS2W Limited Biomarker [154]
DOK5 OT2XWUPN Limited Biomarker [155]
DPM2 OTDERBWM Limited Biomarker [156]
DPYSL5 OT6F9T6F Limited Biomarker [157]
FOXD3 OTXYV6GO Limited Biomarker [158]
FRS2 OTDMD800 Limited Biomarker [159]
GLCCI1 OTU0R1CU Limited Genetic Variation [79]
GPHA2 OT3HY17B Limited Biomarker [160]
GPR158 OTYOC1RQ Limited Altered Expression [76]
GPRC5C OT45AJT3 Limited Altered Expression [76]
HPSE2 OTGEPP8V Limited Genetic Variation [161]
HYAL3 OTG6VUSP Limited Genetic Variation [162]
IL1F10 OTJAASGC Limited Altered Expression [163]
IL22RA1 OTGVKLBR Limited Biomarker [164]
INPP5B OT0SC8W5 Limited Biomarker [165]
KERA OTAP9L2A Limited Genetic Variation [166]
LAMA4 OTHI7TA0 Limited Altered Expression [167]
LRRC8A OT23OE7H Limited Biomarker [168]
LTBP2 OTS88GSD Limited Genetic Variation [169]
MAGEC3 OT0KDWZN Limited Biomarker [77]
MRTFB OT9OXGS9 Limited Biomarker [170]
MT1B OTUA4FFH Limited Genetic Variation [82]
MT1E OTXJKU4Y Limited Genetic Variation [82]
MT1F OTZVUYG1 Limited Genetic Variation [82]
MT1G OTAV1OCR Limited Genetic Variation [82]
MT1H OT0MVBM6 Limited Genetic Variation [82]
MT1M OTVT8PLU Limited Genetic Variation [82]
MT1X OT9AKFVS Limited Genetic Variation [82]
MTMR2 OTNCYGBP Limited Genetic Variation [171]
MVB12B OTO6D2GZ Limited Biomarker [172]
NCK2 OTUYPF55 Limited Genetic Variation [173]
NFATC3 OTYOORME Limited Altered Expression [147]
NGB OTW0SIUY Limited Biomarker [174]
NLRC4 OTAIA3NA Limited Biomarker [125]
NMB OT4NLN6H Limited Biomarker [175]
NPHS1 OT21JD3P Limited Genetic Variation [176]
NPPA OTMQNTNX Limited Biomarker [177]
NRF1 OTOXWNV8 Limited Genetic Variation [178]
NRG2 OTMDE844 Limited Genetic Variation [179]
NSMCE3 OTBD4MSP Limited Genetic Variation [180]
OGN OTKP5S4L Limited Biomarker [181]
OPTC OTCASGO0 Limited Genetic Variation [182]
PADI2 OTT40K94 Limited Biomarker [183]
PAK5 OT32WQGL Limited Genetic Variation [153]
PAX6 OTOC9876 Limited Biomarker [184]
PBX1 OTORABGO Limited Biomarker [158]
PHLDA2 OTMV9DPP Limited Biomarker [185]
PLEKHA7 OTNUMAZ0 Limited Biomarker [146]
POU6F2 OTNSW95F Limited Genetic Variation [186]
PRDX6 OTS8KC8A Limited Altered Expression [187]
PTCHD3 OTFQ1VGM Limited Biomarker [122]
PTPN9 OTNAR1I2 Limited Genetic Variation [188]
RIMS1 OT10T7CK Limited Biomarker [189]
RLN2 OTY3OG71 Limited Biomarker [190]
RPGRIP1 OTABESO9 Limited Genetic Variation [191]
SAA2 OTYAVJWG Limited Altered Expression [192]
SALL1 OTYYZGLH Limited Biomarker [66]
SPRR2A OT62ZU6B Limited Genetic Variation [193]
SRPX OT5B9LXS Limited Altered Expression [194]
STIP1 OT7TXLOX Limited Biomarker [195]
TAC3 OTOJGM38 Limited Biomarker [196]
TAF8 OTWWGCHV Limited Biomarker [197]
TGFBR3 OTQOOUC4 Limited Biomarker [66]
TLX2 OTPFAUM8 Limited Biomarker [198]
TMCO1 OTSME34W Limited Genetic Variation [103]
AMT OTQYEWZQ Disputed Biomarker [199]
ASAH2 OT47TIF3 Disputed Biomarker [200]
GBA2 OTOZXG5D Disputed Biomarker [200]
PDIA5 OT76ZSX5 Disputed Genetic Variation [201]
AFAP1 OTR473H8 moderate Genetic Variation [202]
ARSD OTAHW9M8 moderate Biomarker [203]
CADM2 OT45PVKC moderate Genetic Variation [202]
CNTNAP2 OT48T2ZP moderate Genetic Variation [202]
GPATCH3 OTCRL37V moderate Biomarker [204]
HERC2 OTNQYKOB moderate Genetic Variation [202]
LMX1B OTM8145D moderate Genetic Variation [205]
PITX2 OTWMXAOY moderate Genetic Variation [206]
RAPGEF5 OT53VS75 moderate Genetic Variation [202]
ADAMTSL1 OTBNYF3F Strong Genetic Variation [207]
ANKH OTCN25R5 Strong Genetic Variation [103]
ANXA3 OTDD8OI7 Strong Biomarker [208]
AP2B1 OTL6LZJ4 Strong Altered Expression [209]
AQP4 OTA9MYD5 Strong Altered Expression [210]
ATF2 OTNIZPEA Strong Biomarker [211]
ATOH7 OTUBW5PV Strong Biomarker [212]
BAD OT63ERYM Strong Biomarker [213]
BEX3 OTW1V1L5 Strong Biomarker [214]
BICC1 OTYRKIJ1 Strong Genetic Variation [103]
BIRC6 OTCQJAB0 Strong Biomarker [90]
C14orf39 OTFKQ6HO Strong Genetic Variation [103]
CAV2 OT1FGRQX Strong Genetic Variation [215]
CCND2 OTDULQF9 Strong Biomarker [208]
CISH OT8T5NYL Strong Biomarker [216]
CRISP2 OT8HLTV5 Strong Biomarker [187]
CSTA OT1K68KE Strong Biomarker [217]
DERA OT8SMO3N Strong Genetic Variation [218]
DNAJC24 OTIX5RFV Strong Genetic Variation [218]
ELN OTFSO7PG Strong Genetic Variation [219]
ELP4 OTP5GZ9V Strong Genetic Variation [218]
EXOC2 OT5QG1WG Strong Genetic Variation [103]
FBN1 OTYCJT63 Strong Genetic Variation [220]
FUT8 OTJJCVG1 Strong Biomarker [221]
GSTM3 OTLA2WJT Strong Genetic Variation [222]
HEYL OTN7BH79 Strong Genetic Variation [223]
IL17B OTS86H50 Strong Altered Expression [107]
LTBP3 OTME98V7 Strong Biomarker [224]
MAGEE1 OTOQQO2X Strong Biomarker [106]
MAP1LC3A OTPMGIU4 Strong Biomarker [133]
MECOM OTP983W8 Strong Genetic Variation [103]
MGP OTZWU3FU Strong Biomarker [225]
MMRN1 OT7ZNYHT Strong Altered Expression [147]
NHS OTKE8QAT Strong Biomarker [226]
PEX5 OTK4LMG7 Strong Genetic Variation [227]
PLXNA2 OTNNBJMQ Strong Biomarker [228]
PRPF8 OTU39JZI Strong Genetic Variation [229]
PRSS55 OTXXWI5Y Strong Biomarker [187]
RBFOX1 OTFPKEL7 Strong Genetic Variation [218]
RUNX1T1 OT30DED5 Strong Altered Expression [132]
SH3PXD2B OTAOMCDJ Strong Genetic Variation [230]
SIX1 OT70YYWM Strong Biomarker [231]
SIX6 OTD1RD9D Strong Genetic Variation [232]
SPAG11A OTNQ9UB0 Strong Biomarker [112]
SPZ1 OTQH8HJ5 Strong Biomarker [187]
TDRD7 OTK639ET Strong Biomarker [233]
TFAP2B OTR1T8E9 Strong Altered Expression [209]
THSD7A OT7249HH Strong Genetic Variation [103]
TNNT3 OT4C498E Strong Biomarker [100]
ADAMTS10 OTNJ9VSU Definitive Genetic Variation [234]
ARHGEF12 OTM2D3LT Definitive Genetic Variation [103]
DBN1 OTZVKG8A Definitive Biomarker [235]
DDX20 OT6G8YF3 Definitive Genetic Variation [236]
FMNL2 OT9OVWCV Definitive Genetic Variation [205]
FOXE3 OTAUDKC1 Definitive Genetic Variation [237]
IL20RB OTHFXK95 Definitive Genetic Variation [107]
OCRL OTQ3L42N Definitive Biomarker [165]
PEX13 OTXUAYEW Definitive Genetic Variation [238]
PEX19 OTQIDE9Z Definitive Genetic Variation [239]
PLXDC2 OTS1FUV6 Definitive Genetic Variation [240]
RAN OT2TER5M Definitive Genetic Variation [236]
RBBP8 OTRHJ3GI Definitive Biomarker [189]
SRBD1 OTL1QJSP Definitive Genetic Variation [241]
TMTC2 OTY1QWYU Definitive Genetic Variation [240]
------------------------------------------------------------------------------------
⏷ Show the Full List of 167 DOT(s)

References

1 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 288).
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6792).
3 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
4 ClinicalTrials.gov (NCT02250651) Safety and Efficacy of Bimatoprost Sustained-Release (SR) in Patients With Open-Angle Glaucoma or Ocular Hypertension. U.S. National Institutes of Health.
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 298).
6 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6814).
7 Anaesthetic drugs: linking molecular actions to clinical effects. Curr Pharm Des. 2006;12(28):3665-79.
8 Clinical pipeline report, company report or official report of Mati therapeutics.
9 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6828).
10 Effect of 0.04% AR-13324, a ROCK, and norepinephrine transporter inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma. 2015 Jan;24(1):51-4.
11 FDA Approved Drug Products from FDA Official Website. 2022. Application Number: 215092.
12 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 305).
13 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7451).
14 ClinicalTrials.gov (NCT02207621) A Double-masked Study of AR-13324 in Patients With Glaucoma and Ocular Hypertension. U.S. National Institutes of Health.
15 The effect of prostaglandin F2 alpha-1-isopropylester (PGF2 alpha-IE) on uveoscleral outflow. Prog Clin Biol Res. 1989;312:429-36.
16 ClinicalTrials.gov (NCT02341560) Phase II/III, Randomized, Sham-Controlled Trial of QPI-1007 in Subjects With Acute Non Arteritic Anterior Ischemic Optic Neuropathy (NAION). U.S. National Institutes of Health.
17 ClinicalTrials.gov (NCT02558400) Double-masked Study of PG324 Ophthalmic Solution in Patients With Glaucoma or Ocular Hypertension.
18 ClinicalTrials.gov (NCT01110499) Safety and Efficacy of AGN-210961 Ophthalmic Solution Compared With Bimatoprost Ophthalmic Solution in Patients With Glaucoma or Ocular Hypertension. U.S. National Institutes of Health.
19 ClinicalTrials.gov (NCT02136940) Multiple Dose-parallel-group Study of AMA0076 in Patients With Primary Open-Angle Glaucoma or Ocular Hypertension. U.S. National Institutes of Health.
20 ClinicalTrials.gov (NCT01699464) A Study Assessing the Safety and Ocular Hypotensive Efficacy of AR-12286 in Patients With Elevated Intraocular Pressure for 3 Months. U.S. National Institutes of Health.
21 ClinicalTrials.gov (NCT02250612) SYL040012, Treatment for Open Angle Glaucoma (SYLTAG). U.S. National Institutes of Health.
22 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800023041)
23 ClinicalTrials.gov (NCT02862938) Study of NT-501 Encapsulated Cell Therapy for Glaucoma Neuroprotection and Vision Restoration. U.S. National Institutes of Health.
24 IOP-Lowering Effect of ONO-9054, A Novel Dual Agonist of Prostanoid EP3 and FP Receptors, in Monkeys. Invest Ophthalmol Vis Sci. 2015 Apr;56(4):2547-52.
25 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800001290)
26 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5816).
27 Clinical pipeline report, company report or official report of Ocular therapeutix.
28 Clinical pipeline report, company report or official report of Forsight vision5.
29 ClinicalTrials.gov (NCT01123785) A Dose-Escalation Study Designed to Evaluate the Tolerability, Safety, Pharmacokinetics (PK), and Efficacy of Chronic Topical Ocular Application of INO-8875 in AdultsWith Ocular Hypertension or Primary Open-Angle Glaucoma. U.S. National Institutes of Health.
30 ClinicalTrials.gov (NCT01528111) Study to Evaluate the Safety, Tolerability, and Efficacy of LX7101 in Subjects With Primary Open-angle Glaucoma or Ocular Hypertension. U.S. National Institutes of Health.
31 ClinicalTrials.gov (NCT01410188) Safety/Efficacy Study: OPA-6566 Ophthalmic Solution in Subjects With Primary Open-Angle Glaucoma or Ocular Hypertension. U.S. National Institutes of Health.
32 ClinicalTrials.gov (NCT00753168) Phase 1-2 Evaluation of OT-730 Eye Drops in Reducing the Intraocular Pressure in Patients With Ocular Hypertension or Open-Angle Glaucoma. U.S. National Institutes ofHealth.
33 ClinicalTrials.gov (NCT00846989) Efficacy, Tolerability and Safety of RKI983 (0.05% & 0.10%) vs Xalatan in Patients With POAG or Ocular Hypertension. U.S. National Institutes of Health.
34 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800033965)
35 Metabolism of the aldose reductase inhibitor ALO1567 in man. Br J Clin Pharmacol. 1991 Aug;32(2):221-7.
36 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800005642)
37 ClinicalTrials.gov (NCT00767793) A Placebo-Controlled Study of INS117548 Ophthalmic Solution in Subjects With Glaucoma (P08650). U.S. National Institutes of Health.
38 ClinicalTrials.gov (NCT00443924) Study of INS115644 Ophthalmic Solution in Subjects With Ocular Hypertension or Glaucoma. U.S. National Institutes of Health.
39 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800000600)
40 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800003472)
41 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800003470)
42 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800000369)
43 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800009043)
44 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800007108)
45 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800000292)
46 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800008736)
47 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800034972)
48 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800018945)
49 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800003469)
50 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800000261)
51 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800005323)
52 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800018805)
53 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Target id: 21).
54 The ChEMBL database in 2017. Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954.
55 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Target id: 1503).
56 Dose-dependent pharmacokinetics of L-693,612, a carbonic anhydrase inhibitor, following oral administration in rats. Pharm Res. 1994 Mar;11(3):438-41.
57 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Target id: 29).
58 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Target id: 344).
59 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Target id: 343).
60 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Target id: 341).
61 Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model.Mol Ther. 2002 Jun;5(6):780-7. doi: 10.1006/mthe.2002.0608.
62 Apelin protects against NMDA-induced retinal neuronal death via an APJ receptor by activating Akt and ERK1/2, and suppressing TNF- expression in mice.J Pharmacol Sci. 2017 Jan;133(1):34-41. doi: 10.1016/j.jphs.2016.12.002. Epub 2016 Dec 24.
63 Expression of cell surface transmembrane carbonic anhydrase genes CA9 and CA12 in the human eye: overexpression of CA12 (CAXII) in glaucoma.J Med Genet. 2003 Apr;40(4):257-61. doi: 10.1136/jmg.40.4.257.
64 Synthesis of 1,2,4-triazole-5-on derivatives and determination of carbonic anhydrase II isoenzyme inhibition effects.Bioorg Chem. 2019 Mar;83:170-179. doi: 10.1016/j.bioorg.2018.10.042. Epub 2018 Oct 23.
65 Caveolin-1 modulates intraocular pressure: implications for caveolae mechanoprotection in glaucoma.Sci Rep. 2016 Nov 14;6:37127. doi: 10.1038/srep37127.
66 Common genetic variants associated with open-angle glaucoma.Hum Mol Genet. 2011 Jun 15;20(12):2464-71. doi: 10.1093/hmg/ddr120. Epub 2011 Mar 22.
67 P16INK4a Upregulation Mediated by SIX6 Defines Retinal Ganglion Cell Pathogenesis in Glaucoma.Mol Cell. 2015 Sep 17;59(6):931-40. doi: 10.1016/j.molcel.2015.07.027. Epub 2015 Sep 10.
68 Location of the internal carotid artery and ophthalmic artery segments for non-invasive intracranial pressure measurement by multi-depth TCD.Libyan J Med. 2017 Dec;12(1):1384290. doi: 10.1080/19932820.2017.1384290.
69 The effects of endothelium-specific CYP2J2 overexpression on the attenuation of retinal ganglion cell apoptosis in a glaucoma rat model.FASEB J. 2019 Oct;33(10):11194-11209. doi: 10.1096/fj.201900756R. Epub 2019 Jul 11.
70 Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma.J Clin Invest. 2011 Apr;121(4):1429-44. doi: 10.1172/JCI44646. Epub 2011 Mar 7.
71 Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography.Int Ophthalmol. 2019 Mar;39(3):533-540. doi: 10.1007/s10792-018-0836-z. Epub 2018 Feb 2.
72 Ocular amyloid deposition in familial amyloidosis, Finnish: an analysis of native and variant gelsolin in Meretoja's syndrome.Invest Ophthalmol Vis Sci. 1994 Sep;35(10):3759-69.
73 Novel ocular findings in oculodentodigital dysplasia (ODDD): a case report and literature review.Ophthalmic Genet. 2019 Feb;40(1):54-59. doi: 10.1080/13816810.2019.1571616. Epub 2019 Feb 15.
74 Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma.J Clin Invest. 2017 Jun 30;127(7):2647-2661. doi: 10.1172/JCI91948. Epub 2017 Jun 12.
75 Matrix GLA protein function in human trabecular meshwork cells: inhibition of BMP2-induced calcification process.Invest Ophthalmol Vis Sci. 2006 Mar;47(3):997-1007. doi: 10.1167/iovs.05-1106.
76 Nonclassical Ligand-Independent Regulation of Go Protein by an Orphan Class C G-Protein-Coupled Receptor.Mol Pharmacol. 2019 Aug;96(2):233-246. doi: 10.1124/mol.118.113019. Epub 2019 Jun 12.
77 Continued exploration and tail approach synthesis of benzenesulfonamides containing triazole and dual triazole moieties as carbonic anhydrase I, II, IV and IX inhibitors.Eur J Med Chem. 2019 Dec 1;183:111698. doi: 10.1016/j.ejmech.2019.111698. Epub 2019 Sep 12.
78 Activation of 5-HT1A Receptors Promotes Retinal Ganglion Cell Function by Inhibiting the cAMP-PKA Pathway to Modulate Presynaptic GABA Release in Chronic Glaucoma.J Neurosci. 2019 Feb 20;39(8):1484-1504. doi: 10.1523/JNEUROSCI.1685-18.2018. Epub 2018 Dec 12.
79 Genome-wide association study of intraocular pressure identifies the GLCCI1/ICA1 region as a glaucoma susceptibility locus.Hum Mol Genet. 2013 Nov 15;22(22):4653-60. doi: 10.1093/hmg/ddt293. Epub 2013 Jul 7.
80 Combined effect of brain-derived neurotrophic factor and LINGO-1 fusion protein on long-term survival of retinal ganglion cells in chronic glaucoma.Neuroscience. 2009 Aug 18;162(2):375-82. doi: 10.1016/j.neuroscience.2009.04.075. Epub 2009 May 5.
81 Jnk2 deficiency increases the rate of glaucomatous neurodegeneration in ocular hypertensive DBA/2J mice.Cell Death Dis. 2018 Jun 13;9(6):705. doi: 10.1038/s41419-018-0705-8.
82 Variations in the myocilin gene in patients with open-angle glaucoma.Arch Ophthalmol. 2002 Sep;120(9):1189-97. doi: 10.1001/archopht.120.9.1189.
83 Poly(-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment.Nanoscale. 2017 Aug 17;9(32):11754-11764. doi: 10.1039/c7nr03221h.
84 Genotype-Phenotype Associations of IL6 and PRG4 With Conjunctival Fibrosis After Glaucoma Surgery.JAMA Ophthalmol. 2017 Nov 1;135(11):1147-1155. doi: 10.1001/jamaophthalmol.2017.3407.
85 Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma.Elife. 2019 Oct 17;8:e48474. doi: 10.7554/eLife.48474.
86 Sphingosine-1-Phosphate (S1P)-Related Response of Human Conjunctival Fibroblasts After Filtration Surgery for Glaucoma.Invest Ophthalmol Vis Sci. 2017 Apr 1;58(4):2258-2265. doi: 10.1167/iovs.16-21288.
87 Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning.Br J Ophthalmol. 2019 Feb;103(2):161-166. doi: 10.1136/bjophthalmol-2018-312724. Epub 2018 Oct 26.
88 Association between a SLC23A2 gene variation, plasma vitamin C levels, and risk of glaucoma in a Mediterranean population.Mol Vis. 2011;17:2997-3004. Epub 2011 Nov 17.
89 PTGFR and SLCO2A1 Gene Polymorphisms Determine Intraocular Pressure Response to Latanoprost in Han Chinese Patients with Glaucoma.Curr Eye Res. 2016 Dec;41(12):1561-1565. doi: 10.3109/02713683.2016.1143013. Epub 2016 Jun 23.
90 Research progress on human genes involved in the pathogenesis of glaucoma (Review).Mol Med Rep. 2018 Jul;18(1):656-674. doi: 10.3892/mmr.2018.9071. Epub 2018 May 23.
91 TRPC5 regulates axonal outgrowth in developing retinal ganglion cells.Lab Invest. 2020 Feb;100(2):297-310. doi: 10.1038/s41374-019-0347-1. Epub 2019 Dec 16.
92 Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet. 2015 Feb 5;96(2):266-74. doi: 10.1016/j.ajhg.2014.11.019. Epub 2015 Jan 22.
93 Modulation of factors affecting optic nerve head astrocyte migration.Invest Ophthalmol Vis Sci. 2010 Aug;51(8):4096-103. doi: 10.1167/iovs.10-5177. Epub 2010 Apr 7.
94 Causative glaucoma treatment: promising targets and delivery systems.Drug Discov Today. 2019 Aug;24(8):1606-1613. doi: 10.1016/j.drudis.2019.03.017. Epub 2019 Mar 21.
95 Antiglaucomatous effects of the activation of intrinsic Angiotensin-converting enzyme 2.Invest Ophthalmol Vis Sci. 2013 Jun 21;54(6):4296-306. doi: 10.1167/iovs.12-11427.
96 Taurine Depletion Causes ipRGC Loss and Increases Light-Induced Photoreceptor Degeneration.Invest Ophthalmol Vis Sci. 2018 Mar 1;59(3):1396-1409. doi: 10.1167/iovs.17-23258.
97 BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells.Prog Retin Eye Res. 2017 Mar;57:1-25. doi: 10.1016/j.preteyeres.2017.01.002. Epub 2017 Jan 4.
98 Different contributions of autophagy to retinal ganglion cell death in the diabetic and glaucomatous retinas.Sci Rep. 2018 Sep 6;8(1):13321. doi: 10.1038/s41598-018-30165-7.
99 Inhibitive effect of TAK-242 on Tenon's capsule fibroblasts proliferation in rat eyes.Int J Ophthalmol. 2019 Nov 18;12(11):1699-1707. doi: 10.18240/ijo.2019.11.06. eCollection 2019.
100 An examination of the regulatory mechanism of Pxdn mutation-induced eye disorders using microarray analysis.Int J Mol Med. 2016 Jun;37(6):1449-56. doi: 10.3892/ijmm.2016.2572. Epub 2016 Apr 20.
101 A feed-forward regulation of endothelin receptors by c-Jun in human non-pigmented ciliary epithelial cells and retinal ganglion cells.PLoS One. 2017 Sep 22;12(9):e0185390. doi: 10.1371/journal.pone.0185390. eCollection 2017.
102 Up-regulated endogenous erythropoietin/erythropoietin receptor system and exogenous erythropoietin rescue retinal ganglion cells after chronic ocular hypertension.Cell Mol Neurobiol. 2008 Feb;28(2):317-29. doi: 10.1007/s10571-007-9155-z. Epub 2007 Jun 7.
103 Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma.Nat Genet. 2018 Aug;50(8):1067-1071. doi: 10.1038/s41588-018-0176-y. Epub 2018 Jul 27.
104 Childhood glaucoma genes and phenotypes: Focus on FOXC1 mutations causing anterior segment dysgenesis and hearing loss.Exp Eye Res. 2020 Jan;190:107893. doi: 10.1016/j.exer.2019.107893. Epub 2019 Dec 11.
105 Computational analysis for GNAQ mutations: New insights on the molecular etiology of Sturge-Weber syndrome.J Mol Graph Model. 2017 Sep;76:429-440. doi: 10.1016/j.jmgm.2017.07.011. Epub 2017 Jul 29.
106 Design, synthesis and biological evaluation of novel ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as potent carbonic anhydrase IX inhibitors.Bioorg Chem. 2019 Feb;82:117-122. doi: 10.1016/j.bioorg.2018.10.005. Epub 2018 Oct 5.
107 The Role of the IL-20 Subfamily in Glaucoma.Mediators Inflamm. 2016;2016:4083735. doi: 10.1155/2016/4083735. Epub 2016 Jan 20.
108 Exploring Serum Levels of Brain Derived Neurotrophic Factor and Nerve Growth Factor Across Glaucoma Stages.PLoS One. 2017 Jan 9;12(1):e0168565. doi: 10.1371/journal.pone.0168565. eCollection 2017.
109 Chronic and acute models of retinal neurodegeneration TrkA activity are neuroprotective whereas p75NTR activity is neurotoxic through a paracrine mechanism.J Biol Chem. 2010 Dec 10;285(50):39392-400. doi: 10.1074/jbc.M110.147801. Epub 2010 Oct 13.
110 Loss of Shp2 Rescues BDNF/TrkB Signaling and Contributes to Improved Retinal Ganglion Cell Neuroprotection.Mol Ther. 2019 Feb 6;27(2):424-441. doi: 10.1016/j.ymthe.2018.09.019. Epub 2018 Oct 4.
111 A promising drug candidate for the treatment of glaucoma based on a P2Y6-receptor agonist.Purinergic Signal. 2018 Sep;14(3):271-284. doi: 10.1007/s11302-018-9614-7. Epub 2018 Jul 17.
112 Omidenepag isopropyl for the treatment of glaucoma and ocular hypertension.Drugs Today (Barc). 2019 Jun;55(6):377-384. doi: 10.1358/dot.2019.55.6.2984806.
113 Relationship between Sigma-1 receptor and BDNF in the visual system.Exp Eye Res. 2018 Feb;167:25-30. doi: 10.1016/j.exer.2017.10.012. Epub 2017 Oct 12.
114 Arundic Acid Increases Expression and Function of Astrocytic Glutamate Transporter EAAT1 Via the ERK, Akt, and NF-B Pathways.Mol Neurobiol. 2018 Jun;55(6):5031-5046. doi: 10.1007/s12035-017-0709-x. Epub 2017 Aug 15.
115 Differential Gamma-Synuclein Expression in Acute and Chronic Retinal Ganglion Cell Death in the Retina and Optic Nerve.Mol Neurobiol. 2020 Feb;57(2):698-709. doi: 10.1007/s12035-019-01735-1. Epub 2019 Aug 28.
116 SQSTM1 Mutations and Glaucoma.PLoS One. 2016 Jun 8;11(6):e0156001. doi: 10.1371/journal.pone.0156001. eCollection 2016.
117 Mutation of the melastatin-related cation channel, TRPM3, underlies inherited cataract and glaucoma. PLoS One. 2014 Aug 4;9(8):e104000. doi: 10.1371/journal.pone.0104000. eCollection 2014.
118 Loss of thioredoxin function in retinas of mice overexpressing amyloid .Free Radic Biol Med. 2012 Aug 1;53(3):577-88. doi: 10.1016/j.freeradbiomed.2012.04.010. Epub 2012 Apr 21.
119 Redox proteins thioredoxin 1 and thioredoxin 2 support retinal ganglion cell survival in experimental glaucoma.Gene Ther. 2009 Jan;16(1):17-25. doi: 10.1038/gt.2008.126. Epub 2008 Aug 14.
120 An integrative data mining approach to identifying adverse outcome pathway signatures.Toxicology. 2016 Mar 28;350-352:49-61. doi: 10.1016/j.tox.2016.04.004. Epub 2016 Apr 20.
121 Rapid Development of Glaucoma Via ITV Nonselective ANGPT 1/2 Antibody: A Potential Role for ANGPT/TIE2 Signaling in Primate Aqueous Humor Outflow.Invest Ophthalmol Vis Sci. 2019 Oct 1;60(13):4097-4108. doi: 10.1167/iovs.18-26349.
122 Asymmetry of Peak Thicknesses between the Superior and Inferior Retinal Nerve Fiber Layers for Early Glaucoma Detection: A Simple Screening Method.Yonsei Med J. 2018 Jan;59(1):135-140. doi: 10.3349/ymj.2018.59.1.135.
123 Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility.Nat Commun. 2017 Nov 24;8(1):1755. doi: 10.1038/s41467-017-00837-5.
124 Recent advances in the rational design and development of LIM kinase inhibitors are not enough to enter clinical trials.Eur J Med Chem. 2018 Jul 15;155:445-458. doi: 10.1016/j.ejmech.2018.06.016. Epub 2018 Jun 8.
125 Inflammasomes, the eye and anti-inflammasome therapy.Eye (Lond). 2018 Mar;32(3):491-505. doi: 10.1038/eye.2017.241. Epub 2017 Nov 24.
126 Neovascular glaucoma regulation by arylsulfonyl indoline-benzamide (ASIB) through targeting NF-kB signalling pathway.3 Biotech. 2019 Jun;9(6):211. doi: 10.1007/s13205-019-1730-8. Epub 2019 May 10.
127 Targeting P2X7 receptors as a means for treating retinal disease.Drug Discov Today. 2019 Aug;24(8):1598-1605. doi: 10.1016/j.drudis.2019.03.029. Epub 2019 Apr 4.
128 Pediatric primary calcific band keratopathy with or without glaucoma from biallelic SLC4A4 mutations.Ophthalmic Genet. 2018 Aug;39(4):425-427. doi: 10.1080/13816810.2018.1459738. Epub 2018 Apr 19.
129 Altered expression of 3 alpha-hydroxysteroid dehydrogenases in human glaucomatous optic nerve head astrocytes.Neurobiol Dis. 2003 Oct;14(1):63-73. doi: 10.1016/s0969-9961(03)00101-3.
130 GSTM1-null and GSTT1-active genotypes as risk determinants of primary open angle glaucoma among smokers.Int J Ophthalmol. 2018 Sep 18;11(9):1514-1520. doi: 10.18240/ijo.2018.09.14. eCollection 2018.
131 HSD18B7 Enzyme Assay Technique Using a Triple Quadrupole Mass Spectrometer.Methods Mol Biol. 2019;1996:155-159. doi: 10.1007/978-1-4939-9488-5_13.
132 Blood Levels of Tumor Necrosis Factor Alpha and Its Type 2 Receptor Are Elevated in Patients with Boston Type I Keratoprosthesis.Curr Eye Res. 2019 Jun;44(6):599-606. doi: 10.1080/02713683.2019.1568500. Epub 2019 Feb 4.
133 Axonal protection by Nmnat3 overexpression with involvement of autophagy in optic nerve degeneration.Cell Death Dis. 2013 Oct 17;4(10):e860. doi: 10.1038/cddis.2013.391.
134 Sequence variation at ANAPC1 accounts for 24% of the variability in corneal endothelial cell density.Nat Commun. 2019 Mar 20;10(1):1284. doi: 10.1038/s41467-019-09304-9.
135 Ex-PRESS implantation for different types of glaucoma.Int J Ophthalmol. 2019 Aug 18;12(8):1290-1297. doi: 10.18240/ijo.2019.08.09. eCollection 2019.
136 Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma.Exp Eye Res. 2017 May;158:154-160. doi: 10.1016/j.exer.2016.06.003. Epub 2016 Jun 11.
137 A homozygous B3GAT3 mutation causes a severe syndrome with multiple fractures, expanding the phenotype of linkeropathy syndromes.Am J Med Genet A. 2015 Nov;167A(11):2691-6. doi: 10.1002/ajmg.a.37209. Epub 2015 Jun 18.
138 Expression of CXCL6 and BBS5 that may be glaucoma relevant genes is regulated by PITX2.Gene. 2016 Nov 15;593(1):76-83. doi: 10.1016/j.gene.2016.08.019. Epub 2016 Aug 9.
139 Downregulation of microRNA-149 in retinal ganglion cells suppresses apoptosis through activation of the PI3K/Akt signaling pathway in mice with glaucoma.Am J Physiol Cell Physiol. 2018 Dec 1;315(6):C839-C849. doi: 10.1152/ajpcell.00324.2017. Epub 2018 Sep 5.
140 Treatment of chronic and extreme ocular hypotension following glaucoma surgery with intraocular platelet-rich plasma: A case report.Eur J Ophthalmol. 2019 Jul;29(4):NP9-NP12. doi: 10.1177/1120672118803515. Epub 2018 Oct 7.
141 CDKN2B gene rs1063192 polymorphism decreases the risk of glaucoma.Oncotarget. 2017 Mar 28;8(13):21167-21176. doi: 10.18632/oncotarget.15504.
142 The WldS gene delays axonal but not somatic degeneration in a rat glaucoma model.Eur J Neurosci. 2008 Sep;28(6):1166-79. doi: 10.1111/j.1460-9568.2008.06426.x. Epub 2008 Sep 9.
143 Bioinformatics analysis to identify the differentially expressed genes of glaucoma.Mol Med Rep. 2015 Oct;12(4):4829-36. doi: 10.3892/mmr.2015.4030. Epub 2015 Jul 2.
144 Ocular manifestations of 22q11.2 microduplication.Ophthalmology. 2014 Jan;121(1):392-398. doi: 10.1016/j.ophtha.2013.06.040. Epub 2013 Aug 21.
145 Cochlin in the eye: functional implications.Prog Retin Eye Res. 2007 Sep;26(5):453-69. doi: 10.1016/j.preteyeres.2007.06.002. Epub 2007 Jun 22.
146 Extended association study of PLEKHA7 and COL11A1 with primary angle closure glaucoma in a Han Chinese population.Invest Ophthalmol Vis Sci. 2014 May 22;55(6):3797-802. doi: 10.1167/iovs.14-14370.
147 Activation of the NFAT-Calcium Signaling Pathway in Human Lamina Cribrosa Cells in Glaucoma.Invest Ophthalmol Vis Sci. 2018 Feb 1;59(2):831-842. doi: 10.1167/iovs.17-22531.
148 Distribution of COL8A2 and COL8A1 gene variants in Caucasian primary open angle glaucoma patients with thin central corneal thickness.Mol Vis. 2010 Oct 29;16:2185-91.
149 Disease-specific Preference-based Measure of Glaucoma Health States: HUG-5 Psychometric Validation.J Glaucoma. 2019 Jul;28(7):593-600. doi: 10.1097/IJG.0000000000001267.
150 Intravitreal injection of -crystallin B2 improves retinal ganglion cell survival in an experimental animal model of glaucoma.PLoS One. 2017 Apr 6;12(4):e0175451. doi: 10.1371/journal.pone.0175451. eCollection 2017.
151 No difference in genotype frequencies of polymorphisms of the nitric oxide pathway between Caucasian normal and high tension glaucoma patients.Mol Vis. 2012;18:2174-81. Epub 2012 Aug 7.
152 Effect of cytoglobin overexpression on extracellular matrix component synthesis in human tenon fibroblasts.Biol Res. 2019 Apr 16;52(1):23. doi: 10.1186/s40659-019-0229-4.
153 Copy number variations and primary open-angle glaucoma.Invest Ophthalmol Vis Sci. 2011 Sep 9;52(10):7122-33. doi: 10.1167/iovs.10-5606. Print 2011.
154 Dock3-NMDA receptor interaction as a target for glaucoma therapy.Histol Histopathol. 2017 Mar;32(3):215-221. doi: 10.14670/HH-11-820. Epub 2016 Sep 9.
155 MicroRNA-141-3p inhibits retinal neovascularization and retinal ganglion cell apoptosis in glaucoma mice through the inactivation of Docking protein 5-dependent mitogen-activated protein kinase signaling pathway.J Cell Physiol. 2019 Jun;234(6):8873-8887. doi: 10.1002/jcp.27549. Epub 2018 Dec 4.
156 Genetics of glaucoma.Hum Mol Genet. 2017 Aug 1;26(R1):R21-R27. doi: 10.1093/hmg/ddx184.
157 Neuroprotective and neuroregenerative effects of CRMP-5 on retinal ganglion cells in an experimental in vivo and in vitro model of glaucoma.PLoS One. 2019 Jan 23;14(1):e0207190. doi: 10.1371/journal.pone.0207190. eCollection 2019.
158 Integrated microarray analysis provided novel insights to the pathogenesis of glaucoma.Mol Med Rep. 2017 Dec;16(6):8735-8746. doi: 10.3892/mmr.2017.7711. Epub 2017 Oct 4.
159 Intraocular miR-211 exacerbates pressure-induced cell death in retinal ganglion cells via direct repression of FRS2 signaling.Biochem Biophys Res Commun. 2018 Sep 18;503(4):2984-2992. doi: 10.1016/j.bbrc.2018.08.082. Epub 2018 Aug 18.
160 Classification and Statistical Trend Analysis in Detecting Glaucomatous Visual Field Progression.J Ophthalmol. 2019 May 28;2019:1583260. doi: 10.1155/2019/1583260. eCollection 2019.
161 The atrial natriuretic peptide gene in patients with familial primary open-angle glaucoma.Biochem Biophys Res Commun. 1996 Jun 14;223(2):221-5. doi: 10.1006/bbrc.1996.0874.
162 Genetic association and gene-gene interaction of HAS2, HABP1 and HYAL3 implicate hyaluronan metabolic genes in glaucomatous neurodegeneration.Dis Markers. 2012;33(3):145-54. doi: 10.1155/2012/390539.
163 IL-38: A New Player in Inflammatory Autoimmune Disorders.Biomolecules. 2019 Aug 5;9(8):345. doi: 10.3390/biom9080345.
164 LncRNA NR_003923 promotes cell proliferation, migration, fibrosis, and autophagy via the miR-760/miR-215-3p/IL22RA1 axis in human Tenon's capsule fibroblasts.Cell Death Dis. 2019 Aug 7;10(8):594. doi: 10.1038/s41419-019-1829-1.
165 Compensatory Role of Inositol 5-Phosphatase INPP5B to OCRL in Primary Cilia Formation in Oculocerebrorenal Syndrome of Lowe.PLoS One. 2013 Jun 21;8(6):e66727. doi: 10.1371/journal.pone.0066727. Print 2013.
166 Roles of lumican and keratocan on corneal transparency.Glycoconj J. 2002 May-Jun;19(4-5):275-85. doi: 10.1023/A:1025396316169.
167 Down-regulated LAMA4 inhibits oxidative stress-induced apoptosis of retinal ganglion cells through the MAPK signaling pathway in rats with glaucoma.Cell Cycle. 2019 May;18(9):932-948. doi: 10.1080/15384101.2019.1593645. Epub 2019 Apr 19.
168 The LRRC8-mediated volume-regulated anion channel is altered in glaucoma.Sci Rep. 2019 Apr 1;9(1):5392. doi: 10.1038/s41598-019-41524-3.
169 Delineation of Novel Compound Heterozygous Variants in LTBP2 Associated with Juvenile Open Angle Glaucoma.Genes (Basel). 2018 Oct 30;9(11):527. doi: 10.3390/genes9110527.
170 Development of Targeted siRNA Nanocomplexes to Prevent Fibrosis in Experimental Glaucoma Filtration Surgery.Mol Ther. 2018 Dec 5;26(12):2812-2822. doi: 10.1016/j.ymthe.2018.09.004. Epub 2018 Sep 11.
171 SET binding factor 2 (SBF2) mutation causes CMT4B with juvenile onset glaucoma.Neurology. 2004 Aug 10;63(3):577-80. doi: 10.1212/01.wnl.0000133211.40288.9a.
172 A genome-wide association study of intra-ocular pressure suggests a novel association in the gene FAM125B in the TwinsUK cohort.Hum Mol Genet. 2014 Jun 15;23(12):3343-8. doi: 10.1093/hmg/ddu050. Epub 2014 Feb 11.
173 Microsatellite analysis of the GLC1B locus on chromosome 2 points to NCK2 as a new candidate gene for normal tension glaucoma.Br J Ophthalmol. 2008 Sep;92(9):1293-6. doi: 10.1136/bjo.2008.139980.
174 Neuroglobin Can Prevent or Reverse Glaucomatous Progression in DBA/2J Mice.Mol Ther Methods Clin Dev. 2017 Apr 27;5:200-220. doi: 10.1016/j.omtm.2017.04.008. eCollection 2017 Jun 16.
175 Investigating a downstream gene of Gpnmb using the systems genetics method.Mol Vis. 2019 Apr 23;25:222-236. eCollection 2019.
176 Whole exome sequencing identifies multiple diagnoses in congenital glaucoma with systemic anomalies.Clin Genet. 2016 Oct;90(4):378-82. doi: 10.1111/cge.12816. Epub 2016 Jul 12.
177 Association of NT-proANP Level in Plasma and Humor Aqueous with Primary Open-Angle Glaucoma.Curr Eye Res. 2017 Feb;42(2):233-236. doi: 10.1080/02713683.2016.1180397. Epub 2016 Oct 10.
178 Essential roles of mitochondrial biogenesis regulator Nrf1 in retinal development and homeostasis.Mol Neurodegener. 2018 Oct 17;13(1):56. doi: 10.1186/s13024-018-0287-z.
179 Fine mapping of new glaucoma locus GLC1M and exclusion of neuregulin 2 as the causative gene.Mol Vis. 2007 May 23;13:779-84.
180 Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors.Eur J Med Chem. 2018 Jul 15;155:545-551. doi: 10.1016/j.ejmech.2018.06.021. Epub 2018 Jun 8.
181 Detection of differentially expressed glycogenes in trabecular meshwork of eyes with primary open-angle glaucoma.Invest Ophthalmol Vis Sci. 2006 Apr;47(4):1491-9. doi: 10.1167/iovs.05-0736.
182 Role of CYP1B1, MYOC, OPTN, and OPTC genes in adult-onset primary open-angle glaucoma: predominance of CYP1B1 mutations in Indian patients.Mol Vis. 2007 Apr 30;13:667-76.
183 Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis.Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2508-14. doi: 10.1167/iovs.05-1499.
184 Identification of genes involved in glaucoma pathogenesis using combined network analysis and empirical studies.Hum Mol Genet. 2019 Nov 1;28(21):3637-3663. doi: 10.1093/hmg/ddz222.
185 Association of Glaucoma-Related, Optical Coherence Tomography-Measured Macular Damage With Vision-Related Quality of Life.JAMA Ophthalmol. 2017 Jul 1;135(7):783-788. doi: 10.1001/jamaophthalmol.2017.1659.
186 Genomic locus modulating corneal thickness in the mouse identifies POU6F2 as a potential risk of developing glaucoma.PLoS Genet. 2018 Jan 25;14(1):e1007145. doi: 10.1371/journal.pgen.1007145. eCollection 2018 Jan.
187 PRDX6 attenuates oxidative stress- and TGFbeta-induced abnormalities of human trabecular meshwork cells.Free Radic Res. 2009 Sep;43(9):783-95. doi: 10.1080/10715760903062887. Epub 2009 Jul 1.
188 Heterozygous Meg2 Ablation Causes Intraocular Pressure Elevation and Progressive Glaucomatous Neurodegeneration.Mol Neurobiol. 2019 Jun;56(6):4322-4345. doi: 10.1007/s12035-018-1376-2. Epub 2018 Oct 12.
189 Joint optic disc and cup boundary extraction from monocular fundus images.Comput Methods Programs Biomed. 2017 Aug;147:51-61. doi: 10.1016/j.cmpb.2017.06.004. Epub 2017 Jun 23.
190 Relaxin 2 fails to lower intraocular pressure and to dilate retinal vessels in rats.Int Ophthalmol. 2019 Apr;39(4):847-851. doi: 10.1007/s10792-018-0884-4. Epub 2018 Mar 13.
191 Evidence for RPGRIP1 gene as risk factor for primary open angle glaucoma.Eur J Hum Genet. 2011 Apr;19(4):445-51. doi: 10.1038/ejhg.2010.217. Epub 2011 Jan 12.
192 Increased expression of serum amyloid A in glaucoma and its effect on intraocular pressure.Invest Ophthalmol Vis Sci. 2008 May;49(5):1916-23. doi: 10.1167/iovs.07-1104. Epub 2008 Jan 25.
193 Incidence and risk factors for post-penetrating keratoplasty glaucoma: A systematic review and meta-analysis.PLoS One. 2017 Apr 21;12(4):e0176261. doi: 10.1371/journal.pone.0176261. eCollection 2017.
194 ETX1 is over-expressed in the glaucomatous trabecular meshwork.Mol Vis. 2009 Oct 16;15:2061-7.
195 Co-variation of STI1 and WDR36/UTP21 alters cell proliferation in a glaucoma model.Mol Vis. 2011;17:1957-69. Epub 2011 Jul 19.
196 A novel gene (oculomedin) induced by mechanical stretching in human trabecular cells of the eye.Biochem Biophys Res Commun. 1999 Jun 7;259(2):349-51. doi: 10.1006/bbrc.1999.0797.
197 Tetramethylpyrazine nitrone protects retinal ganglion cells against N-methyl-d-aspartate-induced excitotoxicity.J Neurochem. 2017 May;141(3):373-386. doi: 10.1111/jnc.13970. Epub 2017 Mar 3.
198 Prostaglandin analogues and nitric oxide contribution in the treatment of ocular hypertension and glaucoma.Br J Pharmacol. 2019 Apr;176(8):1079-1089. doi: 10.1111/bph.14328. Epub 2018 May 24.
199 Staged ocular fornix reconstruction for glaucoma drainage device under neoconjunctiva at the time of Boston type 1 Keratoprosthesis implantation.Ocul Surf. 2019 Apr;17(2):336-340. doi: 10.1016/j.jtos.2019.01.010. Epub 2019 Feb 8.
200 Optic Nerve Lipidomics Reveal Impaired Glucosylsphingosine Lipids Pathway in Glaucoma.Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1789-1798. doi: 10.1167/iovs.18-25802.
201 Association of a polymorphism in the BIRC6 gene with pseudoexfoliative glaucoma.PLoS One. 2014 Aug 13;9(8):e105023. doi: 10.1371/journal.pone.0105023. eCollection 2014.
202 Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies.Nat Genet. 2018 Sep;50(9):1335-1341. doi: 10.1038/s41588-018-0184-y. Epub 2018 Aug 13.
203 Analysis of CYP1B1 in pediatric and adult glaucoma and other ocular phenotypes.Mol Vis. 2016 Oct 17;22:1229-1238. eCollection 2016.
204 Whole-Exome Sequencing of Congenital Glaucoma Patients Reveals Hypermorphic Variants in GPATCH3, a New Gene Involved in Ocular and Craniofacial Development.Sci Rep. 2017 Apr 11;7:46175. doi: 10.1038/srep46175.
205 A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci.Nat Commun. 2018 Jun 11;9(1):2278. doi: 10.1038/s41467-018-04555-4.
206 Mutation Survey of Candidate Genes and Genotype-Phenotype Analysis in 20 Southeastern Chinese Patients with Axenfeld-Rieger Syndrome.Curr Eye Res. 2018 Nov;43(11):1334-1341. doi: 10.1080/02713683.2018.1493129. Epub 2018 Jul 17.
207 Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1.Nat Genet. 2011 Jun;43(6):574-8. doi: 10.1038/ng.824. Epub 2011 May 1.
208 Changes in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms.Invest Ophthalmol Vis Sci. 2007 Dec;48(12):5539-48. doi: 10.1167/iovs.07-0542.
209 Generation of a new mouse model of glaucoma characterized by reduced expression of the AP-2 and AP-2 proteins.Sci Rep. 2017 Sep 11;7(1):11140. doi: 10.1038/s41598-017-11752-6.
210 Changes in retinal aquaporin-9 (AQP9) expression in glaucoma.Biosci Rep. 2013 Apr 23;33(2):e00035. doi: 10.1042/BSR20130005.
211 Regulation of cell death and survival pathways in experimental glaucoma.Exp Eye Res. 2007 Aug;85(2):250-8. doi: 10.1016/j.exer.2007.04.011. Epub 2007 May 13.
212 Clarifying the role of ATOH7 in glaucoma endophenotypes.Br J Ophthalmol. 2014 Apr;98(4):562-6. doi: 10.1136/bjophthalmol-2013-304080. Epub 2014 Jan 23.
213 Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma.Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12242-7. doi: 10.1073/pnas.0505138102. Epub 2005 Aug 15.
214 Does elevated intraocular pressure reduce retinal TRKB-mediated survival signaling in experimental glaucoma?.Exp Eye Res. 2009 Dec;89(6):921-33. doi: 10.1016/j.exer.2009.08.003. Epub 2009 Aug 14.
215 Expression-associated polymorphisms of CAV1-CAV2 affect intraocular pressure and high-tension glaucoma risk.Mol Vis. 2015 May 11;21:548-54. eCollection 2015.
216 Lack of Correlation between ASB10 and Normal-tension Glaucoma in a Population from the Republic of Korea.Curr Eye Res. 2020 Apr;45(4):521-525. doi: 10.1080/02713683.2019.1668949. Epub 2019 Oct 7.
217 Cystatin a, a potential common link for mutant myocilin causative glaucoma.PLoS One. 2012;7(5):e36301. doi: 10.1371/journal.pone.0036301. Epub 2012 May 15.
218 Genome-wide association and admixture analysis of glaucoma in the Women's Health Initiative.Hum Mol Genet. 2014 Dec 15;23(24):6634-43. doi: 10.1093/hmg/ddu364. Epub 2014 Jul 15.
219 Lack of association of polymorphisms in elastin with pseudoexfoliation syndrome and glaucoma.J Glaucoma. 2010 Sep;19(7):432-6. doi: 10.1097/IJG.0b013e3181c4b0fe.
220 Novel FBN1 mutation causes Marfan syndrome with bilateral ectopia lentis and refractory glaucoma.Eur J Ophthalmol. 2012 Jul-Aug;22(4):667-9. doi: 10.5301/ejo.5000070.
221 Childhood glaucoma in association with congenital disorder of glycosylation caused by mutations in fucosyltransferase 8.J AAPOS. 2019 Dec;23(6):351-352. doi: 10.1016/j.jaapos.2019.08.272. Epub 2019 Sep 30.
222 Polymorphic glutathione S-transferase M1 is a risk factor of primary open-angle glaucoma among Estonians.Exp Eye Res. 2000 Nov;71(5):447-52. doi: 10.1006/exer.2000.0899.
223 Diagnostic accuracy of macular ganglion cell-inner plexiform layer thickness for glaucoma detection in a population-based study: Comparison with optic nerve head imaging parameters.PLoS One. 2018 Jun 26;13(6):e0199134. doi: 10.1371/journal.pone.0199134. eCollection 2018.
224 Latent TGF- binding protein-2 is essential for the development of ciliary zonule microfibrils.Hum Mol Genet. 2014 Nov 1;23(21):5672-82. doi: 10.1093/hmg/ddu283. Epub 2014 Jun 6.
225 A single gene connects stiffness in glaucoma and the vascular system.Exp Eye Res. 2017 May;158:13-22. doi: 10.1016/j.exer.2016.08.022. Epub 2016 Sep 1.
226 The cost burden of falls in people with glaucoma in National Health Service Hospital Trusts in the UK.J Med Econ. 2020 Jan;23(1):106-112. doi: 10.1080/13696998.2019.1646262. Epub 2019 Aug 13.
227 Glaucoma-causing myocilin mutants require the Peroxisomal targeting signal-1 receptor (PTS1R) to elevate intraocular pressure.Hum Mol Genet. 2007 Mar 15;16(6):609-17. doi: 10.1093/hmg/ddm001. Epub 2007 Feb 22.
228 Evidence-Based Criteria for Determining Peripapillary OCT Reliability.Ophthalmology. 2020 Feb;127(2):167-176. doi: 10.1016/j.ophtha.2019.08.027. Epub 2019 Aug 29.
229 Variants in the PRPF8 Gene are Associated with Glaucoma.Mol Neurobiol. 2018 May;55(5):4504-4510. doi: 10.1007/s12035-017-0673-5. Epub 2017 Jul 13.
230 Localization of SH3PXD2B in human eyes and detection of rare variants in patients with anterior segment diseases and glaucoma.Mol Vis. 2012;18:705-13. Epub 2012 Mar 26.
231 Association of SIX1/SIX6 locus polymorphisms with regional circumpapillary retinal nerve fibre layer thickness: The Nagahama study.Sci Rep. 2017 Jun 29;7(1):4393. doi: 10.1038/s41598-017-02299-7.
232 A Common Glaucoma-risk Variant of SIX6 Alters Retinal Nerve Fiber Layer and Optic Disc Measures in a European Population: The EPIC-Norfolk Eye Study.J Glaucoma. 2018 Sep;27(9):743-749. doi: 10.1097/IJG.0000000000001026.
233 Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science. 2011 Mar 25;331(6024):1571-6. doi: 10.1126/science.1195970.
234 The microfibril hypothesis of glaucoma: implications for treatment of elevated intraocular pressure.J Ocul Pharmacol Ther. 2014 Mar-Apr;30(2-3):170-80. doi: 10.1089/jop.2013.0184. Epub 2014 Feb 12.
235 Elevated Plasma Levels of Drebrin in Glaucoma Patients With Neurodegeneration.Front Neurosci. 2019 Apr 3;13:326. doi: 10.3389/fnins.2019.00326. eCollection 2019.
236 Analysis of the polymorphic variants of RAN and GEMIN3 genes and risk of Primary Open-Angle Glaucoma in the Polish population.Ophthalmic Genet. 2018 Apr;39(2):180-188. doi: 10.1080/13816810.2017.1381978. Epub 2017 Nov 2.
237 Functional analysis of FOXE3 mutations causing dominant and recessive ocular anterior segment disease.Hum Mutat. 2015 Mar;36(3):296-300. doi: 10.1002/humu.22741.
238 Loss of heterozygosity in pseudoexfoliation syndrome.Invest Ophthalmol Vis Sci. 1999 May;40(6):1255-60.
239 Clinical spectrum of pseudoexfoliation syndrome-An electronic records audit.PLoS One. 2017 Oct 27;12(10):e0185373. doi: 10.1371/journal.pone.0185373. eCollection 2017.
240 Genetic Variant Near PLXDC2 Influences the Risk of Primary Open-angle Glaucoma by Increasing Intraocular Pressure in the Japanese Population.J Glaucoma. 2017 Nov;26(11):963-966. doi: 10.1097/IJG.0000000000000790.
241 Dogs and humans share a common susceptibility gene SRBD1 for glaucoma risk.PLoS One. 2013 Sep 11;8(9):e74372. doi: 10.1371/journal.pone.0074372. eCollection 2013.