General Information of Drug Off-Target (DOT) (ID: OTR4X7UH)

DOT Name Peroxiredoxin-like 2A (PRXL2A)
Synonyms Peroxiredoxin-like 2 activated in M-CSF stimulated monocytes; Protein PAMM; Redox-regulatory protein FAM213A
Gene Name PRXL2A
Related Disease
Central retinal vein occlusion ( )
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Head and neck carcinoma ( )
Neoplasm ( )
UniProt ID
PXL2A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF13911
Sequence
MSFLQDPSFFTMGMWSIGAGALGAAALALLLANTDVFLSKPQKAALEYLEDIDLKTLEKE
PRTFKAKELWEKNGAVIMAVRRPGCFLCREEAADLSSLKSMLDQLGVPLYAVVKEHIRTE
VKDFQPYFKGEIFLDEKKKFYGPQRRKMMFMGFIRLGVWYNFFRAWNGGFSGNLEGEGFI
LGGVFVVGSGKQGILLEHREKEFGDKVNLLSVLEAAKMIKPQTLASEKK
Function
Involved in redox regulation of the cell. Acts as an antioxidant. Inhibits TNFSF11-induced NFKB1 and JUN activation and osteoclast differentiation. May affect bone resorption and help to maintain bone mass. Acts as a negative regulator of macrophage-mediated inflammation by inhibiting macrophage production of inflammatory cytokines, probably through suppression of the MAPK signaling pathway.
Tissue Specificity Expressed in CSF1 and TNFSF11-stimulated CD14(+) peripheral blood mononuclear cells (PBMCs).

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Central retinal vein occlusion DIS5ICKE Strong Genetic Variation [1]
Acute myelogenous leukaemia DISCSPTN Limited Genetic Variation [2]
Advanced cancer DISAT1Z9 Limited Altered Expression [3]
Head and neck carcinoma DISOU1DS Limited Altered Expression [3]
Neoplasm DISZKGEW Limited Altered Expression [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Peroxiredoxin-like 2A (PRXL2A). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Peroxiredoxin-like 2A (PRXL2A). [5]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Peroxiredoxin-like 2A (PRXL2A). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Peroxiredoxin-like 2A (PRXL2A). [7]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Peroxiredoxin-like 2A (PRXL2A). [8]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Peroxiredoxin-like 2A (PRXL2A). [9]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Peroxiredoxin-like 2A (PRXL2A). [10]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Peroxiredoxin-like 2A (PRXL2A). [11]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Peroxiredoxin-like 2A (PRXL2A). [13]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Peroxiredoxin-like 2A (PRXL2A). [14]
GSK2110183 DMZHB37 Phase 2 GSK2110183 increases the expression of Peroxiredoxin-like 2A (PRXL2A). [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Peroxiredoxin-like 2A (PRXL2A). [16]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Peroxiredoxin-like 2A (PRXL2A). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Peroxiredoxin-like 2A (PRXL2A). [18]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Peroxiredoxin-like 2A (PRXL2A). [19]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Peroxiredoxin-like 2A (PRXL2A). [20]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Peroxiredoxin-like 2A (PRXL2A). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Peroxiredoxin-like 2A (PRXL2A). [12]
------------------------------------------------------------------------------------

References

1 Cilioretinal artery hypoperfusion and its association with paracentral acute middle maculopathy.Br J Ophthalmol. 2019 Aug;103(8):1137-1145. doi: 10.1136/bjophthalmol-2018-312774. Epub 2018 Sep 26.
2 Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia.Oncotarget. 2017 Jan 31;8(5):7891-7899. doi: 10.18632/oncotarget.13631.
3 MicroRNA-211 Enhances the Oncogenicity of Carcinogen-Induced Oral Carcinoma by Repressing TCF12 and Increasing Antioxidant Activity.Cancer Res. 2016 Aug 15;76(16):4872-86. doi: 10.1158/0008-5472.CAN-15-1664. Epub 2016 May 24.
4 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
7 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
10 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
11 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
12 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
13 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
14 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
15 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
16 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
17 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
18 Bisphenol A and bisphenol S induce distinct transcriptional profiles in differentiating human primary preadipocytes. PLoS One. 2016 Sep 29;11(9):e0163318.
19 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
20 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
21 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.