General Information of Disease (ID: DISOU1DS)

Disease Name Head and neck carcinoma
Synonyms
head and neck cancer; carcinoma of the neck; neck carcinoma; head and neck carcinoma; craniocervical region carcinoma; carcinoma of the head and neck; carcinoma of neck; carcinoma of head and neck; carcinoma of craniocervical region
Definition A carcinoma that arises from the head and neck region. Representative examples include oral cavity squamous cell carcinoma, laryngeal squamous cell carcinoma, and salivary gland carcinoma.
Disease Hierarchy
DISH9F1N: Carcinoma
DISBPSQZ: Head and neck cancer
DISOU1DS: Head and neck carcinoma
Disease Identifiers
MONDO ID
MONDO_0002038
UMLS CUI
C3887461
MedGen ID
854345

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 97 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ACVRL1 TTGYPTC Limited Biomarker [1]
ANO1 TTOJI4S Limited Biomarker [2]
CALCR TTLWS2O Limited Altered Expression [3]
CALR TTUZ7OA Limited Altered Expression [3]
CYP1B1 TTI84H7 Limited Genetic Variation [4]
EIF4E TTZGCP6 Limited Altered Expression [5]
MAPK12 TTYT93M Limited Biomarker [6]
MMP8 TTGA1IV Limited Biomarker [7]
OGG1 TTRU01G Limited Biomarker [8]
PDCD1 TTNBFWK Limited Biomarker [9]
SLC6A8 TTYUHB5 Limited Altered Expression [3]
WEE1 TTJFOAL Limited Biomarker [10]
AGRP TT4DE1O moderate Biomarker [11]
BIRC3 TTAIWZN moderate Biomarker [12]
CDH11 TTRGWZC moderate Biomarker [13]
DEK TT1NMGV moderate Biomarker [14]
DPYD TTZPS91 moderate Biomarker [15]
FCGR2A TTXT21W moderate Genetic Variation [16]
FGFR4 TT1KX2S moderate Biomarker [17]
HK2 TTK02H8 moderate Altered Expression [18]
IL13RA2 TTMPZ7V moderate Altered Expression [19]
KRT19 TT3JF9E moderate Biomarker [20]
LILRB1 TTC0QRJ moderate Biomarker [21]
LY6D TTINE9B moderate Biomarker [22]
MUTYH TTNB0ZK moderate Genetic Variation [23]
UGCG TTPHEX3 moderate Altered Expression [24]
ABCB4 TTJUXV6 Strong Posttranslational Modification [25]
ADH7 TT3LE7P Strong Genetic Variation [26]
ALDH2 TTFLN4T Strong Genetic Variation [27]
APEX1 TTHGL48 Strong Biomarker [28]
ATP7B TTOPO51 Strong Altered Expression [2]
BBC3 TT7JUKC Strong Altered Expression [29]
BST2 TT90BJT Strong Biomarker [30]
CA9 TT2LVK8 Strong Biomarker [31]
CEACAM6 TTIGH2W Strong Altered Expression [32]
CNP TT71P0H Strong Biomarker [33]
COASY TT4YO0Z Strong Biomarker [34]
CSNK2A1 TTER6YH Strong Altered Expression [35]
DCLK1 TTOHTCY Strong Biomarker [36]
DSG3 TTEO4P8 Strong Biomarker [37]
ECE1 TTQ9RYT Strong Altered Expression [38]
ELK3 TT5OJMV Strong Biomarker [39]
EPHB1 TT8MDAC Strong Biomarker [39]
ERBB2 TTR5TV4 Strong Altered Expression [40]
ERBB3 TTSINU2 Strong Altered Expression [40]
FAT1 TTGUJYV Strong Genetic Variation [41]
FCGR1A TTZK4I3 Strong Biomarker [42]
G3BP1 TTG0R8Z Strong Altered Expression [43]
GAL TTXZAJ5 Strong Biomarker [44]
GALC TT5IZRB Strong Altered Expression [45]
GALR1 TTX3HNZ Strong Biomarker [44]
GALR2 TTBPW3J Strong Posttranslational Modification [46]
GNG7 TTCMBKF Strong Altered Expression [47]
HPGDS TTCYE56 Strong Biomarker [48]
HPSE TTR7GJO Strong Biomarker [49]
IL4R TTDWHC3 Strong Altered Expression [19]
ITGA6 TT165T3 Strong Biomarker [50]
KCNA5 TTW0CMT Strong Altered Expression [18]
KCNH1 TT9XKUC Strong Biomarker [51]
KLK2 TTJLNAW Strong Altered Expression [18]
KRT17 TTKV0EC Strong Altered Expression [52]
LCK TT860QF Strong Altered Expression [53]
LTB TTHQ6US Strong Biomarker [54]
LTBR TTFO0PM Strong Altered Expression [55]
MAGEA1 TT63M7Q Strong Biomarker [56]
MAPKAPK2 TTMUG9D Strong Biomarker [57]
MCL1 TTL53M6 Strong Genetic Variation [58]
MELK TTBZOTY Strong Altered Expression [59]
MMP17 TTVSZKN Strong Altered Expression [60]
NEDD8 TTNDC4K Strong Altered Expression [61]
NOD1 TTYSRXM Strong Altered Expression [62]
NUAK1 TT65FL0 Strong Biomarker [63]
P2RX1 TTJW7B3 Strong Altered Expression [64]
P2RX3 TT2THBD Strong Altered Expression [64]
PAK2 TT279WO Strong Biomarker [65]
PDK2 TTJGCKM Strong Biomarker [66]
PIK3CB TT9H4P3 Strong Biomarker [67]
PKN2 TTTHO0M Strong Biomarker [68]
PTGIS TTLXKZR Strong Genetic Variation [69]
PTPN13 TT405FP Strong Altered Expression [70]
RAD51 TTC0G1L Strong Genetic Variation [71]
REL TT1ZCTH Strong Biomarker [72]
RRM1 TTWP0NS Strong Biomarker [73]
SELP TTE5VG0 Strong Genetic Variation [74]
SLC10A1 TTWZRY5 Strong Biomarker [75]
SLC23A2 TTOP832 Strong Biomarker [76]
SLC6A2 TTAWNKZ Strong Biomarker [39]
TACSTD2 TTP2HE5 Strong Altered Expression [77]
TDP2 TTYF26D Strong Genetic Variation [78]
TLR8 TT8CWFK Strong Biomarker [79]
TMEM97 TT9NXW4 Strong Biomarker [80]
TRPC4 TTX0H5W Strong Biomarker [81]
TRPM7 TTFPVZO Strong Altered Expression [82]
UBC TTBP3XA Strong Biomarker [83]
CSF3R TTC70AJ Definitive Altered Expression [84]
GALNS TTT9YPO Definitive Altered Expression [85]
GSTA2 TTNLFBE Definitive Altered Expression [86]
------------------------------------------------------------------------------------
⏷ Show the Full List of 97 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC43A2 DTK02I1 moderate Altered Expression [87]
SLCO6A1 DTIFXNS Strong Biomarker [88]
------------------------------------------------------------------------------------
This Disease Is Related to 17 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
ADH1B DEEN9RD Limited Genetic Variation [89]
CYP2A13 DEXZA9U Limited Biomarker [90]
EPHX1 DELB4KP Limited Genetic Variation [91]
GCLC DESYL1F moderate Altered Expression [24]
ADH1C DEM1HNL Strong Genetic Variation [26]
AKR1A1 DED2FW3 Strong Genetic Variation [92]
CYP1A1 DE6OQ3W Strong Genetic Variation [93]
CYP2R1 DEBIHM3 Strong Altered Expression [94]
MGST1 DEAPJSO Strong Biomarker [95]
NAT1 DE7OAB3 Strong Genetic Variation [96]
NAT2 DER7TA0 Strong Genetic Variation [97]
PER1 DE9HF0I Strong Genetic Variation [78]
SULT1A1 DEYWLRK Strong Genetic Variation [98]
TGM3 DEOEB3Q Strong Posttranslational Modification [99]
UGT1A6 DESD26P Strong Biomarker [100]
UGT1A7 DEZO4N3 Strong Genetic Variation [100]
UGT2B17 DEAZDL8 Strong Genetic Variation [101]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 DME(s)
This Disease Is Related to 169 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ARID3B OTUP9MS4 Limited Biomarker [102]
EPS8 OTZ6ES6V Limited Altered Expression [103]
FJX1 OT8SVTSS Limited Altered Expression [104]
MAP3K13 OTS93BTX Limited Biomarker [105]
MAPK6 OTDDNF3Q Limited Biomarker [6]
NBN OT73B5MD Limited Genetic Variation [106]
PRXL2A OTR4X7UH Limited Altered Expression [107]
RHBDF1 OTCQ7UDS Limited Altered Expression [108]
SLC12A9 OTR7VRAK Limited Biomarker [109]
TCF12 OTZVONNU Limited Altered Expression [107]
TMC8 OTUAD95X Limited Genetic Variation [110]
SHQ1 OTFBXX2H Disputed Genetic Variation [111]
ARTN OTWIWGL6 moderate Biomarker [11]
ASAH1 OT1DNGXL moderate Biomarker [112]
CD82 OTH8MC64 moderate Genetic Variation [113]
CDK2AP1 OTNFOHDJ moderate Biomarker [114]
DSG1 OT11HC3A moderate Biomarker [115]
FANCD2 OTVEB5LF moderate Biomarker [116]
ING4 OT0VVG4V moderate Biomarker [117]
LUC7L3 OTKDED8A moderate Biomarker [118]
PHF20 OTCBVH5P moderate Biomarker [118]
PIWIL1 OT7CRGZ3 moderate Altered Expression [119]
PKD2 OTIXBU8H moderate Biomarker [120]
SEC14L2 OTJST64D moderate Biomarker [121]
SH3BP4 OTVIRKW7 moderate Biomarker [122]
SOX11 OT4LG7LA moderate Biomarker [123]
ADAM12 OTZKOTDB Strong Biomarker [124]
ADAM23 OTVWT6JZ Strong Biomarker [125]
ALKBH1 OTADGU5D Strong Altered Expression [126]
ALOX15B OTWQQ08W Strong Biomarker [127]
ANKRD36B OT3MW415 Strong Biomarker [128]
ARF6 OTVV7KJO Strong Biomarker [129]
ARHGEF5 OTUVGFT9 Strong Biomarker [130]
ARMC9 OT0MZER2 Strong Biomarker [131]
ASAP1 OT4DLRYY Strong Biomarker [129]
C1GALT1 OT2ZSZ6P Strong Biomarker [132]
CBFA2T2 OTNOIB23 Strong Biomarker [133]
CD151 OTF3UZS7 Strong Altered Expression [134]
CD247 OT45FGUX Strong Altered Expression [135]
CISD2 OTVS7S2H Strong Biomarker [136]
CKMT1A OTCINHH5 Strong Altered Expression [137]
CNFN OTSTJPBF Strong Biomarker [115]
CPVL OTOJL31C Strong Genetic Variation [138]
CSMD1 OTIVDSC4 Strong Biomarker [139]
CYGB OTX153DQ Strong Posttranslational Modification [140]
CYP2D7 OTYJTL3S Strong Genetic Variation [96]
DEFB103B OT8RWY64 Strong Altered Expression [141]
DNAJB7 OT4BOECZ Strong Biomarker [142]
DNASE1L1 OT9ZOFN9 Strong Biomarker [143]
DOK1 OTGVRLW6 Strong Posttranslational Modification [144]
DSPP OT1TYNDN Strong Biomarker [145]
EIF4G1 OT2CF1E6 Strong Genetic Variation [146]
EIF6 OTEXMUED Strong Altered Expression [147]
ERCC6 OT2QZKSF Strong Genetic Variation [148]
ESM1 OT331Y8V Strong Altered Expression [149]
ESS2 OTZ08VCZ Strong Biomarker [150]
EXO1 OTI87RS5 Strong Genetic Variation [78]
FGF3 OT9PK2SI Strong Biomarker [151]
FOXH1 OTEXJ9SL Strong Genetic Variation [152]
GOLIM4 OTB5NV8A Strong Biomarker [153]
GPR4 OTIBF32I Strong Biomarker [154]
GSTK1 OTDNGWAF Strong Biomarker [88]
GSTM2 OTG4WT05 Strong Genetic Variation [155]
GSTM3 OTLA2WJT Strong Genetic Variation [48]
HAVCR2 OTOL603T Strong Biomarker [156]
HLTF OTRX2OSF Strong Genetic Variation [78]
HOOK2 OTPO4NQV Strong Altered Expression [18]
HOPX OTBSR6C9 Strong Biomarker [157]
HOXD10 OT0NOWU2 Strong Biomarker [158]
HOXD11 OT9XGA4G Strong Biomarker [158]
HPSE2 OTGEPP8V Strong Altered Expression [159]
IGF2BP2 OT4ZSEEE Strong Altered Expression [160]
ING1 OTEZBRKW Strong Biomarker [161]
ING3 OTDIJXFP Strong Biomarker [117]
ING5 OTRNNSFM Strong Biomarker [162]
IQSEC1 OTK1PBFD Strong Biomarker [129]
ITGA3 OTBCH21D Strong Biomarker [163]
KIF22 OTY6X6BL Strong Biomarker [164]
KIF2A OT2WQ6QD Strong Altered Expression [18]
KMT2C OTC59BCO Strong Biomarker [165]
LRIG1 OTY5HZN5 Strong Altered Expression [166]
LTBP3 OTME98V7 Strong Genetic Variation [167]
MAGED4B OTO37U7W Strong Biomarker [56]
MAL OTBM30SW Strong Biomarker [168]
MLC1 OTCNZLSP Strong Biomarker [169]
MTA3 OTIA6C79 Strong Biomarker [170]
MTMR11 OTHL2O08 Strong Genetic Variation [171]
MUL1 OT2JC9YR Strong Altered Expression [172]
MYBBP1A OTIVEMIU Strong Biomarker [173]
MYCBPAP OT3W21WR Strong Biomarker [129]
MYL2 OT78PC0C Strong Biomarker [169]
MYL9 OT6B22JB Strong Biomarker [169]
MYOF OTRFC3IJ Strong Altered Expression [174]
NANS OTMQ2FUH Strong Biomarker [175]
NCOA1 OTLIUJQD Strong Altered Expression [137]
ND4 OT4RQVAA Strong Genetic Variation [176]
NLRP2 OTJA81JU Strong Biomarker [177]
NOL4 OTWI587R Strong Posttranslational Modification [178]
NSD3 OT3677ZG Strong Posttranslational Modification [179]
OBP2A OTBIJ5TI Strong Biomarker [164]
P2RX2 OT0LF34A Strong Altered Expression [64]
P2RX6 OT1FNTXA Strong Altered Expression [64]
PAIP2 OTFNVLSK Strong Altered Expression [180]
PALB2 OT6DNDBG Strong Biomarker [78]
PCP2 OT3LUE9M Strong Genetic Variation [181]
PFN2 OT5SSSA7 Strong Biomarker [182]
PHEX OTG7N3J7 Strong Biomarker [183]
PIK3R2 OTZSUQK5 Strong Biomarker [133]
PIWIL4 OTDA9MY0 Strong Altered Expression [119]
POU2F1 OTK7ELJ0 Strong Altered Expression [158]
PPP1R12C OT9Q86JO Strong Biomarker [133]
PPP1R13B OTC88VQO Strong Biomarker [133]
PPP1R1A OTGTAGCV Strong Biomarker [184]
PPP1R3B OTVCRXEZ Strong Biomarker [185]
PPP1R3C OTEU05TX Strong Biomarker [185]
PSMA1 OTNBVM2U Strong Altered Expression [186]
PTPRT OTV5TXNN Strong Posttranslational Modification [187]
PTTG1IP OTX21QTE Strong Biomarker [188]
RAB25 OTW0W6NP Strong Biomarker [189]
RAD17 OT1I93DT Strong Altered Expression [190]
RAD50 OTYMU9G1 Strong Genetic Variation [191]
RAD51C OTUD6SY5 Strong Genetic Variation [192]
RAD52 OT0OTDHI Strong Genetic Variation [78]
RARS1 OTHPZ6JN Strong Biomarker [193]
RASA2 OTL06RG2 Strong Biomarker [194]
RASSF2 OT2JHDO4 Strong Biomarker [21]
RBL1 OTDEBFYC Strong Biomarker [195]
RBX1 OTYA1UIO Strong Biomarker [196]
RECQL5 OTVZMP1Q Strong Genetic Variation [78]
REG3G OTLIUY8Z Strong Altered Expression [197]
RELB OTU3QYEF Strong Altered Expression [55]
RFC1 OT3L5PK3 Strong Genetic Variation [198]
RHOBTB1 OTGE8K45 Strong Genetic Variation [199]
RITA1 OTUH8IPS Strong Biomarker [200]
RPS27A OTIIGGZ2 Strong Biomarker [83]
RPS9 OTPV69Q0 Strong Biomarker [165]
RRM2B OTE8GBUR Strong Genetic Variation [201]
RYR2 OT0PF19E Strong Posttranslational Modification [202]
S100A2 OTTGHJ1H Strong Altered Expression [203]
S100A7 OTJFVJRF Strong Biomarker [204]
SDCCAG8 OTV2ZGV9 Strong Biomarker [123]
SERPINB2 OT72QLZB Strong Biomarker [205]
SESN1 OTSFDZWL Strong Biomarker [206]
SETDB1 OTWVUA1B Strong Biomarker [207]
SHMT1 OTIINA3J Strong Genetic Variation [208]
SMARCA2 OTSGJ8SV Strong Genetic Variation [209]
SMUG1 OT2YIOCQ Strong Biomarker [210]
SNX8 OTMG63Z6 Strong Genetic Variation [181]
SPRR1A OTJMI34A Strong Altered Expression [211]
ST13 OTNML6UP Strong Biomarker [212]
STUB1 OTSUYI9A Strong Biomarker [213]
TAS2R13 OTSTOX5G Strong Genetic Variation [214]
TAS2R5 OT5LW1K8 Strong Altered Expression [215]
TAX1BP1 OTGJMGJ9 Strong Genetic Variation [216]
TCHP OTVDMHSY Strong Biomarker [217]
TET3 OT76U3YF Strong Posttranslational Modification [218]
TIMELESS OTD8DCBJ Strong Biomarker [130]
TNFAIP2 OTRZH80H Strong Genetic Variation [219]
TNFRSF10D OTOSRDJT Strong Biomarker [220]
TRIM63 OTUSWA74 Strong Biomarker [221]
TRIP13 OTFM3TI9 Strong Biomarker [222]
TSPAN31 OT8WQ83R Strong Biomarker [175]
CDC73 OT6JASZ1 Definitive Altered Expression [223]
CDH19 OTH31KJO Definitive Altered Expression [224]
CSMD2 OT541Z3W Definitive Altered Expression [225]
ERCC1 OTNPYQHI Definitive Altered Expression [226]
EXTL3 OT2BRUBN Definitive Biomarker [227]
OR10A4 OTYYB8SY Definitive Biomarker [228]
PLK3 OT19CT2Z Definitive Altered Expression [229]
------------------------------------------------------------------------------------
⏷ Show the Full List of 169 DOT(s)

References

1 Activin Receptor-like Kinase 1 Ligand Trap Reduces Microvascular Density and Improves Chemotherapy Efficiency to Various Solid Tumors.Clin Cancer Res. 2016 Jan 1;22(1):96-106. doi: 10.1158/1078-0432.CCR-15-0743. Epub 2015 Sep 15.
2 Copper-dependent ATP7B up-regulation drives the resistance of TMEM16A-overexpressing head-and-neck cancer models to platinum toxicity.Biochem J. 2019 Dec 19;476(24):3705-3719. doi: 10.1042/BCJ20190591.
3 Chemoradiotherapy-related carotid artery inflammation in head and neck cancer patients quantified by [(18)F]FDG PET/CT.Oral Oncol. 2019 Jun;93:101-106. doi: 10.1016/j.oraloncology.2019.04.008. Epub 2019 May 1.
4 Association of cytochrome P450 1B1 haplotypes with head and neck cancer risk.Environ Mol Mutagen. 2017 Jul;58(6):443-450. doi: 10.1002/em.22098. Epub 2017 May 28.
5 Functional and genomic analyses reveal therapeutic potential of targeting -catenin/CBP activity in head and neck cancer.Genome Med. 2018 Jul 20;10(1):54. doi: 10.1186/s13073-018-0569-7.
6 The atypical MAPK ERK3 potently suppresses melanoma cell growth and invasiveness.J Cell Physiol. 2019 Aug;234(8):13220-13232. doi: 10.1002/jcp.27994. Epub 2018 Dec 19.
7 Comparison of the miRNA profiles in HPV-positive and HPV-negative tonsillar tumors and a model system of human keratinocyte clones.BMC Cancer. 2016 Jul 4;16:382. doi: 10.1186/s12885-016-2430-y.
8 Reduced expression of DNA repair genes (XRCC1, XPD, and OGG1) in squamous cell carcinoma of head and neck in North India.Tumour Biol. 2012 Feb;33(1):111-9. doi: 10.1007/s13277-011-0253-7. Epub 2011 Nov 15.
9 The effects and safety of PD-1/PD-L1 inhibitors on head and neck cancer: A systematic review and meta-analysis.Cancer Med. 2019 Oct;8(13):5969-5978. doi: 10.1002/cam4.2510. Epub 2019 Aug 22.
10 Multiple Defects Sensitize p53-Deficient Head and Neck Cancer Cells to the WEE1 Kinase Inhibition.Mol Cancer Res. 2019 May;17(5):1115-1128. doi: 10.1158/1541-7786.MCR-18-0860. Epub 2019 Jan 24.
11 Clinical Outcomes of Several IMRT Techniques for Patients With Head and Neck Cancer: A Propensity Score-Weighted Analysis.Int J Radiat Oncol Biol Phys. 2017 Nov 15;99(4):929-937. doi: 10.1016/j.ijrobp.2017.06.2456. Epub 2017 Jun 27.
12 Radio-sensitization of head and neck cancer cells by a combination of poly(I:C) and cisplatin through downregulation of survivin and c-IAP2.Cell Oncol (Dordr). 2019 Feb;42(1):29-40. doi: 10.1007/s13402-018-0403-7. Epub 2018 Sep 4.
13 CDH11 inhibits proliferation and invasion in head and neck cancer.J Oral Pathol Med. 2017 Feb;46(2):89-97. doi: 10.1111/jop.12471. Epub 2016 Jul 10.
14 DEK promotes HPV-positive and -negative head and neck cancer cell proliferation.Oncogene. 2015 Feb 12;34(7):868-77. doi: 10.1038/onc.2014.15. Epub 2014 Mar 10.
15 Association of genetic variability in enzymes metabolizing chemotherapeutic agents with treatment response in head and neck cancer cases.Asia Pac J Clin Oncol. 2017 Apr;13(2):e11-e20. doi: 10.1111/ajco.12446. Epub 2016 Jan 21.
16 Correction: The influence of FCGR2A and FCGR3A polymorphisms on the survival of patients with recurrent or metastatic squamous cell head and neck cancer treated with cetuximab.Pharmacogenomics J. 2020 Apr;20(2):350. doi: 10.1038/s41397-019-0073-5.
17 Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention.J Hepatol. 2009 Jan;50(1):118-27. doi: 10.1016/j.jhep.2008.08.015. Epub 2008 Oct 12.
18 Roles of GLUT-1 and HK-II expression in the biological behavior of head and neck cancer.Oncotarget. 2019 Apr 30;10(32):3066-3083. doi: 10.18632/oncotarget.24684. eCollection 2019 Apr 30.
19 Cancer gene therapy utilizing interleukin-13 receptor alpha2 chain.Curr Gene Ther. 2005 Apr;5(2):213-23. doi: 10.2174/1566523053544227.
20 Expression of CK19 is an independent predictor of negative outcome for patients with squamous cell carcinoma of the tongue.Oncotarget. 2016 Nov 15;7(46):76151-76158. doi: 10.18632/oncotarget.12691.
21 Cancer-associated fibroblasts promote cancer cell growth through a miR-7-RASSF2-PAR-4 axis in the tumor microenvironment.Oncotarget. 2017 Jan 3;8(1):1290-1303. doi: 10.18632/oncotarget.13609.
22 Genetic reprogramming of tumor cells by zinc finger transcription factors.Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11716-21. doi: 10.1073/pnas.0501162102. Epub 2005 Aug 4.
23 XPD, APE1, and MUTYH polymorphisms increase head and neck cancer risk: effect of gene-gene and gene-environment interactions.Tumour Biol. 2015 Sep;36(10):7569-79. doi: 10.1007/s13277-015-3472-5. Epub 2015 Apr 29.
24 Inhibition of Glucosylceramide Synthase Sensitizes Head and Neck Cancer to Cisplatin.Mol Cancer Ther. 2015 Aug;14(8):1907-15. doi: 10.1158/1535-7163.MCT-15-0171. Epub 2015 Jun 10.
25 ABCB4 is frequently epigenetically silenced in human cancers and inhibits tumor growth. Sci Rep. 2014 Nov 4;4:6899.
26 A review of genetic epidemiology of head and neck cancer related to polymorphisms in metabolic genes, cell cycle control and alcohol metabolism.Acta Otorhinolaryngol Ital. 2012 Feb;32(1):1-11.
27 Validation of Alcohol Flushing Questionnaire to Identify ALDH2 Status in a Case-Control Study of Head and Neck Cancer.Alcohol Clin Exp Res. 2019 Jun;43(6):1225-1233. doi: 10.1111/acer.14049. Epub 2019 Apr 29.
28 Identification of novel heterozygous Apex 1 gene variant (Glu87Gln) in patients withhead and neck cancer of Indian origin.J Cell Biochem. 2018 Nov;119(11):8851-8861. doi: 10.1002/jcb.27138. Epub 2018 Aug 4.
29 BBC3 is down-regulated with increased tumor size independently of p53 expression in head and neck cancer.Cancer Biomark. 2012;11(5):197-208. doi: 10.3233/CBM-2012-00286.
30 CD317 Signature in Head and Neck Cancer Indicates Poor Prognosis.J Dent Res. 2018 Jul;97(7):787-794. doi: 10.1177/0022034518758604. Epub 2018 Feb 27.
31 Quantitative Imaging of the Hypoxia-Related Marker CAIX in Head and Neck Squamous Cell Carcinoma Xenograft Models.Mol Pharm. 2019 Feb 4;16(2):701-708. doi: 10.1021/acs.molpharmaceut.8b00950. Epub 2018 Dec 31.
32 Focal overexpression of CEACAM6 contributes to enhanced tumourigenesis in head and neck cancer via suppression of apoptosis.Mol Cancer. 2012 Sep 28;11:74. doi: 10.1186/1476-4598-11-74.
33 Incidence and outcomes of radiation-induced late cranial neuropathy in 10-year survivors of head and neck cancer.Oral Oncol. 2019 Aug;95:59-64. doi: 10.1016/j.oraloncology.2019.05.014. Epub 2019 Jun 8.
34 Identification of guanine nucleotide-binding protein -7 as an epigenetically silenced gene in head and neck cancer by gene expression profiling.Int J Oncol. 2013 Apr;42(4):1427-36. doi: 10.3892/ijo.2013.1808. Epub 2013 Feb 6.
35 Therapeutic Targeting of Protein Kinase CK2 Gene Expression in Feline Oral Squamous Cell Carcinoma: A Naturally Occurring Large-Animal Model of Head and Neck Cancer.Hum Gene Ther Clin Dev. 2017 Jun;28(2):80-86. doi: 10.1089/humc.2017.008. Epub 2017 Mar 23.
36 Evaluation of the cancer stem cell marker DCLK1 in patients with lymph node metastases of head and neck cancer.Pathol Res Pract. 2019 Dec;215(12):152698. doi: 10.1016/j.prp.2019.152698. Epub 2019 Oct 23.
37 DSG3 is overexpressed in head neck cancer and is a potential molecular target for inhibition of oncogenesis.Oncogene. 2007 Jan 18;26(3):467-76. doi: 10.1038/sj.onc.1209802. Epub 2006 Jul 31.
38 ECE-1 overexpression in head and neck cancer is associated with poor tumor differentiation and patient outcome.Oral Dis. 2019 Jan;25(1):44-53. doi: 10.1111/odi.12935. Epub 2018 Oct 21.
39 Correction to: Advancing interdisciplinary research in head and neck cancer through a multicenter longitudinal prospective cohort study: the NETherlands QUality of life and BIomedical Cohort (NET-QUBIC) data warehouse and biobank.BMC Cancer. 2019 Oct 22;19(1):982. doi: 10.1186/s12885-019-6223-y.
40 MET activation confers resistance to cetuximab, and prevents HER2 and HER3 upregulation in head and neck cancer.Int J Cancer. 2019 Aug 1;145(3):748-762. doi: 10.1002/ijc.32170. Epub 2019 Feb 11.
41 FAT1 somatic mutations in head and neck carcinoma are associated with tumor progression and survival.Carcinogenesis. 2018 Dec 13;39(11):1320-1330. doi: 10.1093/carcin/bgy107.
42 Psychometric testing of the Fear of Cancer Recurrence Inventory-caregiver Chinese version in cancer family caregivers in Taiwan.Psychooncology. 2018 Jun;27(6):1580-1588. doi: 10.1002/pon.4697. Epub 2018 Mar 30.
43 The roles and mechanisms of G3BP1 in tumour promotion. J Drug Target. 2019 Mar;27(3):300-305.
44 Site-specific methylation patterns of the GAL and GALR1/2 genes in head and neck cancer: Potential utility as biomarkers for prognosis.Mol Carcinog. 2017 Mar;56(3):1107-1116. doi: 10.1002/mc.22577. Epub 2016 Nov 1.
45 DNA promoter hypermethylation contributes to down-regulation of galactocerebrosidase gene in lung and head and neck cancers.Int J Clin Exp Pathol. 2015 Sep 1;8(9):11042-50. eCollection 2015.
46 Tumor suppressor activity and inactivation of galanin receptor type 2 by aberrant promoter methylation in head and neck cancer.Cancer. 2014 Jan 15;120(2):205-13. doi: 10.1002/cncr.28411. Epub 2013 Oct 10.
47 Loss of protein expression and recurrent DNA hypermethylation of the GNG7 gene in squamous cell carcinoma of the head and neck.J Appl Genet. 2012 May;53(2):167-74. doi: 10.1007/s13353-011-0079-4. Epub 2011 Dec 20.
48 GSTM3 A/B polymorphism and risk for head and neck cancer: a meta-analysis.PLoS One. 2014 Jan 8;9(1):e83851. doi: 10.1371/journal.pone.0083851. eCollection 2014.
49 Induction of heparanase by HPV E6 oncogene in head and neck squamous cell carcinoma.J Cell Mol Med. 2014 Jan;18(1):181-6. doi: 10.1111/jcmm.12179. Epub 2013 Nov 28.
50 Fibroblast gene expression profile reflects the stage of tumour progression in oral squamous cell carcinoma.J Pathol. 2011 Mar;223(4):459-69. doi: 10.1002/path.2841. Epub 2011 Jan 17.
51 Frequent aberrant expression of the human ether go-go (hEAG1) potassium channel in head and neck cancer: pathobiological mechanisms and clinical implications.J Mol Med (Berl). 2012 Oct;90(10):1173-84. doi: 10.1007/s00109-012-0893-0. Epub 2012 Mar 31.
52 Decreasing cytokeratin 17 expression in head and neck cancer predicts nodal metastasis and poor prognosis: The first evidence.Clin Otolaryngol. 2018 Aug;43(4):1010-1018. doi: 10.1111/coa.13092. Epub 2018 Apr 16.
53 Mechanisms responsible for signaling and functional defects.J Immunother. 1998 Jul;21(4):295-306. doi: 10.1097/00002371-199807000-00007.
54 Lymphotoxin- Interacts with Methylated EGFR to Mediate Acquired Resistance to Cetuximab in Head and Neck Cancer.Clin Cancer Res. 2017 Aug 1;23(15):4388-4401. doi: 10.1158/1078-0432.CCR-16-1955. Epub 2017 Feb 14.
55 Lymphotoxin- receptor-NIK signaling induces alternative RELB/NF-B2 activation to promote metastatic gene expression and cell migration in head and neck cancer.Mol Carcinog. 2019 Mar;58(3):411-425. doi: 10.1002/mc.22938. Epub 2018 Nov 28.
56 Expression of cancer testis antigens in head and neck squamous cell carcinomas.Head Neck. 2006 Jul;28(7):614-9. doi: 10.1002/hed.20380.
57 MAPKAPK2 (MK2) inhibition mediates radiation-induced inflammatory cytokine production and tumor growth in head and neck squamous cell carcinoma.Oncogene. 2019 Nov;38(48):7329-7341. doi: 10.1038/s41388-019-0945-9. Epub 2019 Aug 15.
58 Responsiveness of the EAT-10 to Clinical Change in Head and Neck Cancer Patients with Dysphagia.Int J Speech Lang Pathol. 2020 Feb;22(1):78-85. doi: 10.1080/17549507.2019.1596312. Epub 2019 Apr 28.
59 MELK inhibition targets cancer stem cells through downregulation of SOX2 expression in head and neck cancer cells.Oncol Rep. 2019 Apr;41(4):2540-2548. doi: 10.3892/or.2019.6988. Epub 2019 Jan 30.
60 Regulation of membrane-type 4 matrix metalloproteinase by SLUG contributes to hypoxia-mediated metastasis.Neoplasia. 2009 Dec;11(12):1371-82. doi: 10.1593/neo.91326.
61 The NEDD8 conjugation pathway regulates p53 transcriptional activity and head and neck cancer cell sensitivity to ionizing radiation.Int J Oncol. 2012 Oct;41(4):1531-40. doi: 10.3892/ijo.2012.1584. Epub 2012 Aug 7.
62 Nod-like receptors in head and neck squamous cell carcinoma.Acta Otolaryngol. 2013 Dec;133(12):1333-44. doi: 10.3109/00016489.2013.831476. Epub 2013 Sep 23.
63 microRNA-203 suppresses invasion and epithelial-mesenchymal transition induction via targeting NUAK1 in head and neck cancer.Oncotarget. 2016 Feb 16;7(7):8223-39. doi: 10.18632/oncotarget.6972.
64 P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer.Oncotarget. 2017 Jul 25;8(30):48972-48982. doi: 10.18632/oncotarget.16903.
65 PAK2-c-Myc-PKM2 axis plays an essential role in head and neck oncogenesis via regulating Warburg effect.Cell Death Dis. 2018 Aug 1;9(8):825. doi: 10.1038/s41419-018-0887-0.
66 Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer.Cancer Lett. 2016 Feb 1;371(1):20-9. doi: 10.1016/j.canlet.2015.11.023. Epub 2015 Nov 23.
67 A PI3K/AKT Scaffolding Protein, IQ Motif-Containing GTPase Associating Protein 1 (IQGAP1), Promotes Head and Neck Carcinogenesis.Clin Cancer Res. 2020 Jan 1;26(1):301-311. doi: 10.1158/1078-0432.CCR-19-1063. Epub 2019 Oct 9.
68 Role of protein kinase N2 (PKN2) in cigarette smoke-mediated oncogenic transformation of oral cells.J Cell Commun Signal. 2018 Dec;12(4):709-721. doi: 10.1007/s12079-017-0442-2. Epub 2018 Feb 26.
69 Genetic polymorphisms in the prostaglandin pathway genes and risk of head and neck cancer.Oral Dis. 2015 Mar;21(2):207-15. doi: 10.1111/odi.12244. Epub 2014 Apr 28.
70 FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis.J Cell Biochem. 2007 Jan 1;100(1):16-28. doi: 10.1002/jcb.20922.
71 Association of RAD 51 135 G/C, 172 G/T and XRCC3 Thr241Met gene polymorphisms with increased risk of head and neck cancer.Asian Pac J Cancer Prev. 2014;15(23):10457-62. doi: 10.7314/apjcp.2014.15.23.10457.
72 TNF- promotes c-REL/Np63 interaction and TAp73 dissociation from key genes that mediate growth arrest and apoptosis in head and neck cancer.Cancer Res. 2011 Nov 1;71(21):6867-77. doi: 10.1158/0008-5472.CAN-11-2460. Epub 2011 Sep 20.
73 RRM1 gene expression evaluated in the liquid biopsy (blood cfRNA) as a non-invasive, predictive factor for radiotherapy-induced oral mucositis and potential prognostic biomarker in head and neck cancer patients.Cancer Biomark. 2018;22(4):657-667. doi: 10.3233/CBM-171082.
74 Relationship Between -2028 C/T SELP Gene Polymorphism, Concentration of Plasma P-Selectin and Risk of Malnutrition in Head and Neck Cancer Patients.Pathol Oncol Res. 2019 Apr;25(2):741-749. doi: 10.1007/s12253-018-00578-w. Epub 2019 Jan 8.
75 NTCP model validation method for DAHANCA patient selection of protons versus photons in head and neck cancer radiotherapy.Acta Oncol. 2019 Oct;58(10):1410-1415. doi: 10.1080/0284186X.2019.1654129. Epub 2019 Aug 21.
76 Genetic variation in the vitamin C transporter, SLC23A2, modifies the risk of HPV16-associated head and neck cancer.Carcinogenesis. 2009 Jun;30(6):977-81. doi: 10.1093/carcin/bgp076. Epub 2009 Apr 3.
77 Trop2 inhibition suppresses the proliferation and invasion of laryngeal carcinoma cells via the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway.Mol Med Rep. 2015 Jul;12(1):865-70. doi: 10.3892/mmr.2015.3485. Epub 2015 Mar 13.
78 Assessment of DNA repair susceptibility genes identified by whole exome sequencing in head and neck cancer.DNA Repair (Amst). 2018 Jun-Jul;66-67:50-63. doi: 10.1016/j.dnarep.2018.04.005. Epub 2018 Apr 26.
79 Phase Ib Study of Immune Biomarker Modulation with Neoadjuvant Cetuximab and TLR8 Stimulation in Head and Neck Cancer to Overcome Suppressive Myeloid Signals.Clin Cancer Res. 2018 Jan 1;24(1):62-72. doi: 10.1158/1078-0432.CCR-17-0357. Epub 2017 Oct 23.
80 Breast Cancer (18)F-ISO-1 Uptake as a Marker of Proliferation Status.J Nucl Med. 2020 May;61(5):665-670. doi: 10.2967/jnumed.119.232363. Epub 2019 Dec 13.
81 Data-driven Analysis of TRP Channels in Cancer: Linking Variation in Gene Expression to Clinical Significance.Cancer Genomics Proteomics. 2016 Jan-Feb;13(1):83-90.
82 Effects of Salivary Mg on Head and Neck Carcinoma via TRPM7.J Dent Res. 2019 Mar;98(3):304-312. doi: 10.1177/0022034518813359. Epub 2018 Dec 4.
83 Identification of stable housekeeping genes in response to ionizing radiation in cancer research.Sci Rep. 2017 Mar 6;7:43763. doi: 10.1038/srep43763.
84 Granulocyte colony-stimulating factor (G-CSF)-mediated signaling regulates type IV collagenase activity in head and neck cancer cells.Int J Cancer. 2001 Jul 1;93(1):42-6. doi: 10.1002/ijc.1297.
85 N-acetylgalactosamine-6-sulfatase (GALNS), Similar to Glycodelin, Is a Potential General Biomarker for Multiple Malignancies.Anticancer Res. 2019 Nov;39(11):6317-6324. doi: 10.21873/anticanres.13842.
86 Association between expression of glutathione-associated enzymes and response to platinum-based chemotherapy in head and neck cancer.Chem Biol Interact. 1998 Apr 24;111-112:187-98. doi: 10.1016/s0009-2797(97)00161-0.
87 L-type amino acid transporters LAT1 and LAT4 in cancer: uptake of 3-O-methyl-6-18F-fluoro-L-dopa in human adenocarcinoma and squamous cell carcinoma in vitro and in vivo.J Nucl Med. 2007 Dec;48(12):2063-71. doi: 10.2967/jnumed.107.043620.
88 Clinical Management of Head and Neck Cancer Cases: Role of Pharmacogenetics of CYP2 and GSTs.Oncol Res Treat. 2016;39(4):221-6. doi: 10.1159/000444608. Epub 2016 Feb 26.
89 Investigating the Association between Alcohol and Risk of Head and Neck Cancer in Taiwan.Sci Rep. 2017 Aug 29;7(1):9701. doi: 10.1038/s41598-017-08802-4.
90 Hypermethylation of carcinogen metabolism genes, CYP1A1, CYP2A13 and GSTM1 genes in head and neck cancer. Oral Dis. 2010 Oct;16(7):668-73.
91 Systematic Review and Meta-Analysis of the Relationship between EPHX1 Polymorphisms and the Risk of Head and Neck Cancer.PLoS One. 2015 Apr 29;10(4):e0123347. doi: 10.1371/journal.pone.0123347. eCollection 2015.
92 Pooled analysis of alcohol dehydrogenase genotypes and head and neck cancer: a HuGE review.Am J Epidemiol. 2004 Jan 1;159(1):1-16. doi: 10.1093/aje/kwh003.
93 Tobacco carcinogen-metabolizing genes CYP1A1, GSTM1, and GSTT1 polymorphisms and their interaction with tobacco exposure influence the risk of head and neck cancer in Northeast Indian population.Tumour Biol. 2015 Aug;36(8):5773-83. doi: 10.1007/s13277-015-3246-0. Epub 2015 Feb 28.
94 Genetic sequence variants in vitamin D metabolism pathway genes, serum vitamin D level and outcome in head and neck cancer patients.Int J Cancer. 2013 Jun 1;132(11):2520-7. doi: 10.1002/ijc.27946. Epub 2012 Dec 14.
95 Investigation of radiosensitivity gene signatures in cancer cell lines.PLoS One. 2014 Jan 22;9(1):e86329. doi: 10.1371/journal.pone.0086329. eCollection 2014.
96 Association of CYP1A1 and CYP2D6 gene polymorphisms with head and neck cancer in Tunisian patients.Mol Biol Rep. 2014;41(4):2591-600. doi: 10.1007/s11033-014-3117-6. Epub 2014 Jan 22.
97 N-acetyltransferase 2 genetic variants confer the susceptibility to head and neck carcinoma: evidence from 23 case-control studies.Tumour Biol. 2014 Apr;35(4):3585-95. doi: 10.1007/s13277-013-1473-9. Epub 2013 Dec 13.
98 A case-control study investigating the role of sulfotransferase 1A1 polymorphism in head and neck cancer.J Cancer Res Clin Oncol. 2006 Jul;132(7):466-72. doi: 10.1007/s00432-006-0093-9. Epub 2006 Mar 31.
99 TGM3, a candidate tumor suppressor gene, contributes to human head and neck cancer.Mol Cancer. 2013 Dec 1;12(1):151. doi: 10.1186/1476-4598-12-151.
100 Combined effect of genetic polymorphisms in phase I and II biotransformation enzymes on head and neck cancer risk.Head Neck. 2013 Jun;35(6):858-67. doi: 10.1002/hed.23054. Epub 2012 Jun 19.
101 Homozygous deletions of UGT2B17 modifies effects of smoking on TP53-mutations and relapse of head and neck carcinoma.BMC Cancer. 2015 Mar 31;15:205. doi: 10.1186/s12885-015-1220-2.
102 let-7 Modulates Chromatin Configuration and Target Gene Repression through Regulation of the ARID3B Complex.Cell Rep. 2016 Jan 26;14(3):520-533. doi: 10.1016/j.celrep.2015.12.064. Epub 2016 Jan 14.
103 Eps8 expression is significantly lower in p16(+) head and neck squamous cell carcinomas (HNSCCs) compared with p16(-) HNSCCs.Hum Pathol. 2018 Feb;72:45-51. doi: 10.1016/j.humpath.2017.10.021. Epub 2017 Oct 28.
104 An Oncogenic Role for Four-Jointed Box 1 (FJX1) in Nasopharyngeal Carcinoma.Dis Markers. 2019 May 19;2019:3857853. doi: 10.1155/2019/3857853. eCollection 2019.
105 Survival of Head and Neck Cancer Cells Relies upon LZK Kinase-Mediated Stabilization of Mutant p53.Cancer Res. 2017 Sep 15;77(18):4961-4972. doi: 10.1158/0008-5472.CAN-17-0267. Epub 2017 Jul 31.
106 Association of polymorphisms and haplotypes of the NBN gene with laryngeal cancer and multiple primary tumors of the head and neck.Head Neck. 2012 Mar;34(3):376-83. doi: 10.1002/hed.21741. Epub 2011 Apr 5.
107 MicroRNA-211 Enhances the Oncogenicity of Carcinogen-Induced Oral Carcinoma by Repressing TCF12 and Increasing Antioxidant Activity.Cancer Res. 2016 Aug 15;76(16):4872-86. doi: 10.1158/0008-5472.CAN-15-1664. Epub 2016 May 24.
108 Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth.Mol Cancer Ther. 2008 Jun;7(6):1355-64. doi: 10.1158/1535-7163.MCT-08-0104. Epub 2008 Jun 4.
109 Reactive oxygen species and p21Waf1/Cip1 are both essential for p53-mediated senescence of head and neck cancer cells.Cell Death Dis. 2015 Mar 12;6(3):e1678. doi: 10.1038/cddis.2015.44.
110 A coding variant in TMC8 (EVER2) is associated with high risk HPV infection and head and neck cancer risk.PLoS One. 2015 Apr 8;10(4):e0123716. doi: 10.1371/journal.pone.0123716. eCollection 2015.
111 Deletion of 3p13-14 locus spanning FOXP1 to SHQ1 cooperates with PTEN loss in prostate oncogenesis.Nat Commun. 2017 Oct 20;8(1):1081. doi: 10.1038/s41467-017-01198-9.
112 Targeting acid ceramidase sensitises head and neck cancer to cisplatin.Eur J Cancer. 2016 Jan;52:163-72. doi: 10.1016/j.ejca.2015.10.056. Epub 2015 Dec 11.
113 Lack of germ line changes in KISS1 and KAI1 genes in sporadic head and neck cancer patients of Pakistani origin.Asian Pac J Cancer Prev. 2011;12(10):2767-71.
114 Expression of cyclin-dependent kinase 2-associated protein 1 confers an independent prognosticator in nasopharyngeal carcinoma: a cohort study.J Clin Pathol. 2012 Sep;65(9):795-801. doi: 10.1136/jclinpath-2012-200893. Epub 2012 Jul 12.
115 Analysis of gene coexpression network reveals prognostic significance of CNFN in patients with head and neck cancer.Oncol Rep. 2019 Apr;41(4):2168-2180. doi: 10.3892/or.2019.7019. Epub 2019 Feb 18.
116 Involvement of Fanconi anemia genes FANCD2 and FANCF in the molecular basis of drug resistance in leukemia.Mol Med Rep. 2015 Jun;11(6):4605-10. doi: 10.3892/mmr.2015.3288. Epub 2015 Jan 30.
117 Tumor-specific mutation and downregulation of ING5 detected in oral squamous cell carcinoma.Int J Cancer. 2010 Nov 1;127(9):2088-94. doi: 10.1002/ijc.25224.
118 Whole blood transcriptome correlates with treatment response in nasopharyngeal carcinoma.J Exp Clin Cancer Res. 2012 Sep 17;31(1):76. doi: 10.1186/1756-9966-31-76.
119 HPV status is associated with altered PIWI-interacting RNA expression pattern in head and neck cancer.Oral Oncol. 2016 Apr;55:43-48. doi: 10.1016/j.oraloncology.2016.01.012. Epub 2016 Feb 4.
120 Exosome-delivered TRPP2 siRNA inhibits the epithelial-mesenchymal transition of FaDu cells.Oncol Lett. 2019 Feb;17(2):1953-1961. doi: 10.3892/ol.2018.9752. Epub 2018 Nov 23.
121 Prognostic significance of P53 histochemistry and DNA histogram parameters in head and neck malignancies.Anticancer Res. 2000 Sep-Oct;20(5C):4031-7.
122 TTP mediates cisplatin-induced apoptosis of head and neck cancer cells by down-regulating the expression of Bcl-2.J Chemother. 2015 Jun;27(3):174-80. doi: 10.1179/1973947814Y.0000000234. Epub 2015 Jan 21.
123 Sox11 promotes head and neck cancer progression via the regulation of SDCCAG8.J Exp Clin Cancer Res. 2019 Mar 29;38(1):138. doi: 10.1186/s13046-019-1146-7.
124 A positive feedback loop between HER2 and ADAM12 in human head and neck cancer cells increases migration and invasion.Oncogene. 2012 Jun 7;31(23):2888-98. doi: 10.1038/onc.2011.460. Epub 2011 Oct 10.
125 Methylation profile of genes CDKN2A (p14 and p16), DAPK1, CDH1, and ADAM23 in head and neck cancer.Cancer Genet Cytogenet. 2007 Feb;173(1):31-7. doi: 10.1016/j.cancergencyto.2006.09.008.
126 ALKBH overexpression in head and neck cancer: potential target for novel anticancer therapy.Sci Rep. 2019 Sep 13;9(1):13249. doi: 10.1038/s41598-019-49550-x.
127 Synergistic effect of 15-lipoxygenase 2 and radiation in killing head-and-neck cancer.Cancer Gene Ther. 2008 May;15(5):323-30. doi: 10.1038/cgt.2008.9. Epub 2008 Feb 22.
128 Melanoma-associated antigen A11 reduces erlotinib and afatinib efficacy in head and neck cancer.J Craniomaxillofac Surg. 2018 Mar;46(3):492-497. doi: 10.1016/j.jcms.2017.12.014. Epub 2017 Dec 24.
129 Inhibition of epithelial-mesenchymal transition by cetuximab via the EGFR-GEP100-Arf6-AMAP1 pathway in head and neck cancer.Head Neck. 2017 Mar;39(3):476-485. doi: 10.1002/hed.24626. Epub 2016 Nov 23.
130 Increased PD-1(+) and TIM-3(+) TILs during Cetuximab Therapy Inversely Correlate with Response in Head and Neck Cancer Patients.Cancer Immunol Res. 2017 May;5(5):408-416. doi: 10.1158/2326-6066.CIR-16-0333. Epub 2017 Apr 13.
131 Prophylactic NS-21 maintains the skin moisture but does not reduce the severity of radiation dermatitis in patients with head and neck cancer: a randomized control trial.Radiat Oncol. 2019 May 30;14(1):90. doi: 10.1186/s13014-019-1302-4.
132 C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer.Oncogene. 2018 Oct;37(43):5780-5793. doi: 10.1038/s41388-018-0375-0. Epub 2018 Jun 21.
133 Phosphorylation of PI3K regulatory subunit p85 contributes to resistance against PI3K inhibitors in radioresistant head and neck cancer.Oral Oncol. 2018 Mar;78:56-63. doi: 10.1016/j.oraloncology.2018.01.014. Epub 2018 Feb 20.
134 CD151 expression is frequent but unrelated to clinical outcome in head and neck cancer.Clin Oral Investig. 2017 Jun;21(5):1503-1508. doi: 10.1007/s00784-016-1911-3. Epub 2016 Jul 21.
135 Change in CD3-chain expression is an independent predictor of disease status in head and neck cancer patients.Int J Cancer. 2016 Jul 1;139(1):122-9. doi: 10.1002/ijc.30046. Epub 2016 Mar 8.
136 CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer.Cancer Lett. 2018 Sep 28;432:180-190. doi: 10.1016/j.canlet.2018.06.018. Epub 2018 Jun 18.
137 CKMT1 and NCOA1 expression as a predictor of clinical outcome in patients with advanced-stage head and neck squamous cell carcinoma.Head Neck. 2016 Apr;38 Suppl 1:E1392-403. doi: 10.1002/hed.24232. Epub 2015 Oct 30.
138 Human papillomavirus seropositivity and risks of head and neck cancer.Int J Cancer. 2007 Feb 15;120(4):825-32. doi: 10.1002/ijc.22330.
139 Clinical Significance of CUB and Sushi Multiple Domains 1 Inactivation in Head and Neck Squamous Cell Carcinoma.Int J Mol Sci. 2018 Dec 12;19(12):3996. doi: 10.3390/ijms19123996.
140 Cytoglobin is upregulated by tumour hypoxia and silenced by promoter hypermethylation in head and neck cancer.Br J Cancer. 2009 Jul 7;101(1):139-44. doi: 10.1038/sj.bjc.6605121.
141 Human papillomavirus oncogenic E6 protein regulates human -defensin 3 (hBD3) expression via the tumor suppressor protein p53.Oncotarget. 2016 May 10;7(19):27430-44. doi: 10.18632/oncotarget.8443.
142 Pseudolaric Acid B Induces Growth Inhibition and Caspase-Dependent Apoptosis on Head and Neck Cancer Cell lines through Death Receptor 5.Molecules. 2019 Oct 16;24(20):3715. doi: 10.3390/molecules24203715.
143 Systematic analysis of survival-associated alternative splicing signatures uncovers prognostic predictors for head and neck cancer.J Cell Physiol. 2019 Sep;234(9):15836-15846. doi: 10.1002/jcp.28241. Epub 2019 Feb 10.
144 Inactivation of the putative suppressor gene DOK1 by promoter hypermethylation in primary human cancers.Int J Cancer. 2012 Jun 1;130(11):2484-94. doi: 10.1002/ijc.26299. Epub 2011 Sep 22.
145 A Novel Polyphenol Conjugate Sensitizes Cisplatin-Resistant Head and Neck Cancer Cells to Cisplatin via Nrf2 Inhibition.Mol Cancer Ther. 2016 Nov;15(11):2620-2629. doi: 10.1158/1535-7163.MCT-16-0332. Epub 2016 Aug 22.
146 Eukaryotic Translation Initiation Factor 4 Gamma 1 (EIF4G1): a target for cancer therapeutic intervention?.Cancer Cell Int. 2019 Aug 31;19:224. doi: 10.1186/s12935-019-0947-2. eCollection 2019.
147 The role of eukaryotic translation initiation factor 6 in tumors.Oncol Lett. 2017 Jul;14(1):3-9. doi: 10.3892/ol.2017.6161. Epub 2017 May 12.
148 Single-nucleotide polymorphisms in nucleotide excision repair genes, cigarette smoking, and the risk of head and neck cancer.Cancer Epidemiol Biomarkers Prev. 2013 Aug;22(8):1428-45. doi: 10.1158/1055-9965.EPI-13-0185. Epub 2013 May 29.
149 Functional analysis of ESM1 by siRNA knockdown in primary and metastatic head and neck cancer cells.J Oral Pathol Med. 2018 Jan;47(1):40-47. doi: 10.1111/jop.12648. Epub 2017 Oct 30.
150 Volatilomic insight of head and neck cancer via the effects observed on saliva metabolites.Sci Rep. 2018 Dec 7;8(1):17725. doi: 10.1038/s41598-018-35854-x.
151 Hypomethylated Fgf3 is a potential biomarker for early detection of oral cancer in mice treated with the tobacco carcinogen dibenzo[def,p]chrysene.PLoS One. 2017 Oct 26;12(10):e0186873. doi: 10.1371/journal.pone.0186873. eCollection 2017.
152 The interplay between alcohol consumption, oral hygiene, ALDH2 and ADH1B in the risk of head and neck cancer.Int J Cancer. 2014 Nov 15;135(10):2424-36. doi: 10.1002/ijc.28885. Epub 2014 Apr 19.
153 Golgi integral membrane protein 4 manipulates cellular proliferation, apoptosis, and cell cycle in human head and neck cancer.Biosci Rep. 2018 Aug 31;38(4):BSR20180454. doi: 10.1042/BSR20180454. Print 2018 Aug 31.
154 The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer.PLoS One. 2016 Apr 14;11(4):e0152789. doi: 10.1371/journal.pone.0152789. eCollection 2016.
155 Meta-analysis of glutathione S-transferase M1 genotype and risk toward head and neck cancer.Head Neck. 2006 Mar;28(3):217-24. doi: 10.1002/hed.20295.
156 TIM-3 expression and its association with overall survival in primary osteosarcoma.Oncol Lett. 2019 Nov;18(5):5294-5300. doi: 10.3892/ol.2019.10855. Epub 2019 Sep 12.
157 HOPX functions as a tumour suppressor in head and neck cancer.Sci Rep. 2016 Dec 9;6:38758. doi: 10.1038/srep38758.
158 POU2F1 activity regulates HOXD10 and HOXD11 promoting a proliferative and invasive phenotype in head and neck cancer.Oncotarget. 2014 Sep 30;5(18):8803-15. doi: 10.18632/oncotarget.2492.
159 Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity.J Biol Chem. 2010 Sep 3;285(36):28010-9. doi: 10.1074/jbc.M110.116384. Epub 2010 Jun 24.
160 Lin28b promotes head and neck cancer progression via modulation of the insulin-like growth factor survival pathway.Oncotarget. 2012 Dec;3(12):1641-52. doi: 10.18632/oncotarget.785.
161 Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas.Gene. 2005 Aug 15;356:109-17. doi: 10.1016/j.gene.2005.02.014.
162 Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5.Genome Biol. 2019 Jan 14;20(1):12. doi: 10.1186/s13059-018-1604-0.
163 Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer.Cancer Sci. 2017 Aug;108(8):1681-1692. doi: 10.1111/cas.13298. Epub 2017 Jul 4.
164 Use of telomelysin (OBP-301) in mouse xenografts of human head and neck cancer.Oncol Rep. 2009 Nov;22(5):1039-43. doi: 10.3892/or_00000533.
165 Events of alternative splicing in head and neck cancer via RNA sequencing - an update.BMC Genomics. 2019 Jun 3;20(1):442. doi: 10.1186/s12864-019-5794-y.
166 LRIG1 modulates aggressiveness of head and neck cancers by regulating EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling.Oncogene. 2014 Mar 13;33(11):1375-84. doi: 10.1038/onc.2013.98. Epub 2013 Apr 29.
167 Reliability and psychometric validity of Hindi version of Depression, Anxiety and Stress Scale-21 (DASS-21) for Hindi speaking Head Neck Cancer and Oral Potentially Malignant Disorders Patients.J Cancer Res Ther. 2019 Jul-Sep;15(3):653-658. doi: 10.4103/jcrt.JCRT_281_17.
168 T-lymphocyte maturation-associated protein gene as a candidate metastasis suppressor for head and neck squamous cell carcinomas.Cancer Sci. 2009 May;100(5):873-80. doi: 10.1111/j.1349-7006.2009.01132.x.
169 Automatic replanning of VMAT plans for different treatment machines: Atemplate-based approach using constrained optimization.Strahlenther Onkol. 2018 Oct;194(10):921-928. doi: 10.1007/s00066-018-1319-x. Epub 2018 May 30.
170 MTA3-SOX2 Module Regulates Cancer Stemness and Contributes to Clinical Outcomes of Tongue Carcinoma.Front Oncol. 2019 Aug 27;9:816. doi: 10.3389/fonc.2019.00816. eCollection 2019.
171 Wee-1 kinase inhibition overcomes cisplatin resistance associated with high-risk TP53 mutations in head and neck cancer through mitotic arrest followed by senescence.Mol Cancer Ther. 2015 Feb;14(2):608-19. doi: 10.1158/1535-7163.MCT-14-0735-T. Epub 2014 Dec 10.
172 HSPA5 negatively regulates lysosomal activity through ubiquitination of MUL1 in head and neck cancer.Autophagy. 2018;14(3):385-403. doi: 10.1080/15548627.2017.1414126. Epub 2018 Feb 21.
173 Regulation and function of Myb-binding protein 1A (MYBBP1A) in cellular senescence and pathogenesis of head and neck cancer.Cancer Lett. 2015 Mar 28;358(2):191-199. doi: 10.1016/j.canlet.2014.12.042. Epub 2014 Dec 24.
174 High expression of myoferlin is associated with poor outcome in oropharyngeal squamous cell carcinoma patients and is inversely associated with HPV-status.Oncotarget. 2016 Apr 5;7(14):18665-77. doi: 10.18632/oncotarget.7625.
175 Quantitative proteomics unveiled: Regulation of DNA double strand break repair by EGFR involves PARP1.Radiother Oncol. 2015 Sep;116(3):423-30. doi: 10.1016/j.radonc.2015.09.018. Epub 2015 Sep 25.
176 Mutations and polymorphisms in mitochondrial DNA in head and neck cancer cell lines.Acta Otorhinolaryngol Ital. 2006 Aug;26(4):185-90.
177 Molecular disruption of NBS1 with targeted gene delivery enhances chemosensitisation in head and neck cancer.Br J Cancer. 2010 Dec 7;103(12):1822-30. doi: 10.1038/sj.bjc.6605980. Epub 2010 Nov 9.
178 Validation of nucleolar protein 4 as a novel methylated tumor suppressor gene in head and neck cancer.Oncol Rep. 2014 Feb;31(2):1014-20. doi: 10.3892/or.2013.2927. Epub 2013 Dec 16.
179 WHSC1L1-mediated EGFR mono-methylation enhances the cytoplasmic and nuclear oncogenic activity of EGFR in head and neck cancer.Sci Rep. 2017 Jan 19;7:40664. doi: 10.1038/srep40664.
180 Vascular endothelial growth factor-A and Poly(A) binding protein-interacting protein 2 expression in human head and neck carcinomas: correlation and prognostic significance.Br J Cancer. 2006 May 22;94(10):1516-23. doi: 10.1038/sj.bjc.6603108.
181 Genome-wide association study identifies genes associated with neuropathy in patients with head and neck cancer.Sci Rep. 2018 Jun 8;8(1):8789. doi: 10.1038/s41598-018-27070-4.
182 Profilin 2 Promotes Proliferation and Metastasis of Head and Neck Cancer Cells by Regulating PI3K/AKT/-Catenin Signaling Pathway.Oncol Res. 2019 Sep 23;27(9):1079-1088. doi: 10.3727/096504019X15579146061957. Epub 2019 May 15.
183 Monte Carlo radiotherapy simulations of accelerated repopulation and reoxygenation for hypoxic head and neck cancer.Br J Radiol. 2011 Oct;84(1006):903-18. doi: 10.1259/bjr/25012212.
184 Overcoming cancer cell resistance to VSV oncolysis with JAK1/2 inhibitors.Cancer Gene Ther. 2013 Oct;20(10):582-9. doi: 10.1038/cgt.2013.55. Epub 2013 Sep 13.
185 Posttraumatic growth in head and neck cancer survivors: Is it possible and what are the correlates?.Psychooncology. 2018 Jun;27(6):1517-1523. doi: 10.1002/pon.4682. Epub 2018 Apr 16.
186 The transcription levels and prognostic values of seven proteasome alpha subunits in human cancers.Oncotarget. 2017 Jan 17;8(3):4501-4519. doi: 10.18632/oncotarget.13885.
187 Frequent promoter hypermethylation of PTPRT increases STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer.Oncogene. 2016 Mar 3;35(9):1163-9. doi: 10.1038/onc.2015.171. Epub 2015 May 18.
188 PTTG and PBF Functionally Interact with p53 and Predict Overall Survival in Head and Neck Cancer.Cancer Res. 2018 Oct 15;78(20):5863-5876. doi: 10.1158/0008-5472.CAN-18-0855. Epub 2018 Aug 28.
189 Rab25 regulates invasion and metastasis in head and neck cancer.Clin Cancer Res. 2013 Mar 15;19(6):1375-88. doi: 10.1158/1078-0432.CCR-12-2858. Epub 2013 Jan 22.
190 Downregulation of RAD17 in head and neck cancer.Head Neck. 2008 Jan;30(1):35-42. doi: 10.1002/hed.20660.
191 The MRN protein complex genes: MRE11 and RAD50 and susceptibility to head and neck cancers.Mol Cancer. 2013 Sep 30;12(1):113. doi: 10.1186/1476-4598-12-113.
192 Rad51C: a novel suppressor gene modulates the risk of head and neck cancer.Mutat Res. 2014 Apr;762:47-54. doi: 10.1016/j.mrfmmm.2014.02.007. Epub 2014 Mar 12.
193 The RARS-MAD1L1 Fusion Gene Induces Cancer Stem Cell-like Properties and Therapeutic Resistance in Nasopharyngeal Carcinoma. Clin Cancer Res. 2018 Feb 1;24(3):659-673.
194 Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis.BMC Cancer. 2016 Feb 29;16:170. doi: 10.1186/s12885-016-2209-1.
195 Pocket proteins suppress head and neck cancer.Cancer Res. 2012 Mar 1;72(5):1280-9. doi: 10.1158/0008-5472.CAN-11-2833. Epub 2012 Jan 11.
196 Disruption of KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex components by multiple genetic mechanisms: Association with poor prognosis in head and neck cancer.Head Neck. 2015 May;37(5):727-34. doi: 10.1002/hed.23663. Epub 2014 Jun 18.
197 Expression of REG III and prognosis in head and neck cancer.Oncol Rep. 2013 Aug;30(2):573-8. doi: 10.3892/or.2013.2521. Epub 2013 Jun 5.
198 Genetic variation of fifteen folate metabolic pathway associated gene loci and the risk of incident head and neck carcinoma: the Women's Genome Health Study.Clin Chim Acta. 2013 Mar 15;418:33-6. doi: 10.1016/j.cca.2012.11.030. Epub 2012 Dec 28.
199 Identification of a candidate tumor suppressor gene RHOBTB1 located at a novel allelic loss region 10q21 in head and neck cancer.J Cancer Res Clin Oncol. 2006 Jan;132(1):19-27. doi: 10.1007/s00432-005-0033-0. Epub 2005 Sep 17.
200 RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems.Redox Biol. 2017 Oct;13:219-227. doi: 10.1016/j.redox.2017.05.025. Epub 2017 Jun 1.
201 Investigation of the association of hRRM1 and p53R2 gene polymorphisms in head and neck squamous cell carcinomas.Med Oncol. 2014 Jul;31(7):12. doi: 10.1007/s12032-014-0012-x. Epub 2014 May 27.
202 Somatic mutations and promotor methylation of the ryanodine receptor 2 is a common event in the pathogenesis of head and neck cancer.Int J Cancer. 2019 Dec 15;145(12):3299-3310. doi: 10.1002/ijc.32481. Epub 2019 Jun 19.
203 Down-regulation of S100A2 in lymph node metastases of head and neck cancer.Head Neck. 2007 Mar;29(3):236-43. doi: 10.1002/hed.20511.
204 Nuclear S100A7 is associated with poor prognosis in head and neck cancer.PLoS One. 2010 Aug 3;5(8):e11939. doi: 10.1371/journal.pone.0011939.
205 Plasminogen activator inhibitor-1 as regulator of tumor-initiating cell properties in head and neck cancers.Head Neck. 2016 Apr;38 Suppl 1:E895-904. doi: 10.1002/hed.24124. Epub 2015 Jul 16.
206 Suppression of SESN1 reduces cisplatin and hyperthermia resistance through increasing reactive oxygen species (ROS) in human maxillary cancer cells.Int J Hyperthermia. 2018 Dec;35(1):269-278. doi: 10.1080/02656736.2018.1496282. Epub 2018 Oct 9.
207 Knockdown of SET Domain, Bifurcated 1 suppresses head and neck cancer cell viability and wound-healing ability in vitro.Turk J Biol. 2019 Oct 14;43(5):281-292. doi: 10.3906/biy-1903-71. eCollection 2019.
208 DNMT3B C46359T and SHMT1 C1420T polymorphisms in the folate pathway in carcinogenesis of head and neck.Mol Biol Rep. 2014 Feb;41(2):581-9. doi: 10.1007/s11033-013-2895-6. Epub 2013 Dec 22.
209 Two BRM promoter insertion polymorphisms increase the risk of early-stage upper aerodigestive tract cancers.Cancer Med. 2014 Apr;3(2):426-33. doi: 10.1002/cam4.201. Epub 2014 Feb 12.
210 Voxel based comparison and texture analysis of 18F-FDG and 18F-FMISO PET of patients with head-and-neck cancer.PLoS One. 2019 Feb 28;14(2):e0213111. doi: 10.1371/journal.pone.0213111. eCollection 2019.
211 The combined use of EFS, GPX2, and SPRR1A expression could distinguish favorable from poor clinical outcome among epithelial-like head and neck carcinoma subtypes.Head Neck. 2019 Jun;41(6):1830-1845. doi: 10.1002/hed.25623. Epub 2019 Jan 16.
212 Carboxy-terminus Hsc70 interacting protein exerts a tumor inhibition function in head and neck cancer.Oncol Rep. 2017 Sep;38(3):1629-1636. doi: 10.3892/or.2017.5827. Epub 2017 Jul 17.
213 Cancer stem-like cell related protein CD166 degrades through E3 ubiquitin ligase CHIP in head and neck cancer.Exp Cell Res. 2017 Apr 1;353(1):46-53. doi: 10.1016/j.yexcr.2017.03.005. Epub 2017 Mar 6.
214 Variation in the gene TAS2R13 is associated with differences in alcohol consumption in patients with head and neck cancer.Chem Senses. 2012 Oct;37(8):737-44. doi: 10.1093/chemse/bjs063. Epub 2012 Jul 23.
215 Effects of chemotherapy on gene expression of lingual taste receptors in patients with head and neck cancer.Laryngoscope. 2016 Mar;126(3):E103-9. doi: 10.1002/lary.25679. Epub 2015 Sep 30.
216 Analysis of the TAX1BP1 gene in head and neck cancer patients.Braz J Otorhinolaryngol. 2010 Mar-Apr;76(2):193-8. doi: 10.1590/S1808-86942010000200008.
217 4E-BP1 Is a Tumor Suppressor Protein Reactivated by mTOR Inhibition in Head and Neck Cancer.Cancer Res. 2019 Apr 1;79(7):1438-1450. doi: 10.1158/0008-5472.CAN-18-1220. Epub 2019 Mar 20.
218 Association of TET3 epigenetic inactivation with head and neck cancer.Oncotarget. 2018 May 11;9(36):24480-24493. doi: 10.18632/oncotarget.25333. eCollection 2018 May 11.
219 A functional TNFAIP2 3'-UTR rs8126 genetic polymorphism contributes to risk of esophageal squamous cell carcinoma.PLoS One. 2014 Nov 10;9(11):e109318. doi: 10.1371/journal.pone.0109318. eCollection 2014.
220 Interaction between N-cadherin and decoy receptor-2 regulates apoptosis in head and neck cancer.Oncotarget. 2018 Jul 31;9(59):31516-31530. doi: 10.18632/oncotarget.25846. eCollection 2018 Jul 31.
221 Differential regulation of NF-kB and IRF target genes as they relate to fatigue in patients with head and neck cancer.Brain Behav Immun. 2018 Nov;74:291-295. doi: 10.1016/j.bbi.2018.09.013. Epub 2018 Sep 11.
222 TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer.Nat Commun. 2014 Jul 31;5:4527. doi: 10.1038/ncomms5527.
223 The clinicopathological significances and biological functions of parafibromin expression in head and neck squamous cell carcinomas.Tumour Biol. 2015 Dec;36(12):9487-97. doi: 10.1007/s13277-015-3618-5. Epub 2015 Jul 1.
224 Delineation and candidate gene mutation screening of the 18q22 minimal region of deletion in head and neck squamous cell carcinoma.Oncogene. 2002 Jul 25;21(32):5016-23. doi: 10.1038/sj.onc.1205626.
225 Identification of two new members of the CSMD gene family.Genomics. 2003 Sep;82(3):412-5. doi: 10.1016/s0888-7543(03)00149-6.
226 Could excision repair cross-complementing group-1 mRNA expression from peripheral blood lymphocytes predict locoregional failure with cisplatin chemoradiation for locally advanced laryngeal cancer?.Asia Pac J Clin Oncol. 2020 Apr;16(2):e19-e26. doi: 10.1111/ajco.13239. Epub 2019 Oct 15.
227 Ad5CMVp53 gene therapy for locally advanced prostate cancer--where do we stand?.World J Urol. 2000 Apr;18(2):121-4. doi: 10.1007/s003450050183.
228 Functional and T cell receptor gene usage analysis of cytotoxic T lymphocytes in fresh tumor-infiltrating lymphocytes from human head and neck cancer.Jpn J Cancer Res. 1995 May;86(5):477-83. doi: 10.1111/j.1349-7006.1995.tb03081.x.
229 PRK, a cell cycle gene localized to 8p21, is downregulated in head and neck cancer.Genes Chromosomes Cancer. 2000 Mar;27(3):332-6. doi: 10.1002/(sici)1098-2264(200003)27:3<332::aid-gcc15>3.0.co;2-k.