General Information of Drug Off-Target (DOT) (ID: OTRTXDBM)

DOT Name Stromelysin-3 (MMP11)
Synonyms SL-3; ST3; EC 3.4.24.-; Matrix metalloproteinase-11; MMP-11
Gene Name MMP11
UniProt ID
MMP11_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.4.24.-
Pfam ID
PF00045 ; PF00413
Sequence
MAPAAWLRSAAARALLPPMLLLLLQPPPLLARALPPDAHHLHAERRGPQPWHAALPSSPA
PAPATQEAPRPASSLRPPRCGVPDPSDGLSARNRQKRFVLSGGRWEKTDLTYRILRFPWQ
LVQEQVRQTMAEALKVWSDVTPLTFTEVHEGRADIMIDFARYWHGDDLPFDGPGGILAHA
FFPKTHREGDVHFDYDETWTIGDDQGTDLLQVAAHEFGHVLGLQHTTAAKALMSAFYTFR
YPLSLSPDDCRGVQHLYGQPWPTVTSRTPALGPQAGIDTNEIAPLEPDAPPDACEASFDA
VSTIRGELFFFKAGFVWRLRGGQLQPGYPALASRHWQGLPSPVDAAFEDAQGHIWFFQGA
QYWVYDGEKPVLGPAPLTELGLVRFPVHAALVWGPEKNKIYFFRGRDYWRFHPSTRRVDS
PVPRRATDWRGVPSEIDAAFQDADGYAYFLRGRLYWKFDPVKVKALEGFPRLVGPDFFGC
AEPANTFL
Function May play an important role in the progression of epithelial malignancies.
Tissue Specificity Specifically expressed in stromal cells of breast carcinomas.
Reactome Pathway
Degradation of the extracellular matrix (R-HSA-1474228 )
Activation of Matrix Metalloproteinases (R-HSA-1592389 )
Collagen degradation (R-HSA-1442490 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Stromelysin-3 (MMP11). [1]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Stromelysin-3 (MMP11). [16]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Stromelysin-3 (MMP11). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Stromelysin-3 (MMP11). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Stromelysin-3 (MMP11). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Stromelysin-3 (MMP11). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Stromelysin-3 (MMP11). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Stromelysin-3 (MMP11). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Stromelysin-3 (MMP11). [8]
Progesterone DMUY35B Approved Progesterone decreases the expression of Stromelysin-3 (MMP11). [9]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Stromelysin-3 (MMP11). [10]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Stromelysin-3 (MMP11). [11]
Liothyronine DM6IR3P Approved Liothyronine increases the expression of Stromelysin-3 (MMP11). [12]
Gamolenic acid DMQN30Z Approved Gamolenic acid decreases the expression of Stromelysin-3 (MMP11). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Stromelysin-3 (MMP11). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Stromelysin-3 (MMP11). [15]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Stromelysin-3 (MMP11). [17]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Stromelysin-3 (MMP11). [18]
Cirsimarin DMM10TG Investigative Cirsimarin decreases the expression of Stromelysin-3 (MMP11). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. Free Radic Biol Med. 2002 Nov 15;33(10):1419-32.
9 Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007 Apr;64(7-8):1009-32.
10 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
11 Analysis of gene expression induced by diethylstilbestrol (DES) in human primitive Mullerian duct cells using microarray. Cancer Lett. 2005 Apr 8;220(2):197-210.
12 Similarities and differences between two modes of antagonism of the thyroid hormone receptor. ACS Chem Biol. 2011 Oct 21;6(10):1096-106.
13 Antineoplastic effects of gamma linolenic Acid on hepatocellular carcinoma cell lines. J Clin Biochem Nutr. 2010 Jul;47(1):81-90.
14 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
17 Acetaldehyde activates Jun/AP-1 expression and DNA binding activity in human oral keratinocytes. Oral Oncol. 2002 Apr;38(3):281-90. doi: 10.1016/s1368-8375(01)00056-2.
18 Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A. Arch Toxicol. 2018 Feb;92(2):995-1014.
19 Flavone cirsimarin impairs cell proliferation, migration, and invasion in MCF-7 cells grown in 2D and 3D models. Toxicol In Vitro. 2022 Sep;83:105416. doi: 10.1016/j.tiv.2022.105416. Epub 2022 Jun 13.