General Information of Drug Off-Target (DOT) (ID: OTTLHL64)

DOT Name ALK and LTK ligand 2 (ALKAL2)
Synonyms Augmentor alpha; AUG-alpha
Gene Name ALKAL2
Related Disease
Epithelial ovarian cancer ( )
Neoplasm ( )
Neuroblastoma ( )
UniProt ID
ALKL2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7LS0; 7MZX; 7N00; 7NWZ
Pfam ID
PF15129
Sequence
MRGPGHPLLLGLLLVLGAAGRGRGGAEPREPADGQALLRLVVELVQELRKHHSAEHKGLQ
LLGRDCALGRAEAAGLGPSPEQRVEIVPRDLRMKDKFLKHLTGPLYFSPKCSKHFHRLYH
NTRDCTIPAYYKRCARLLTRLAVSPVCMEDKQ
Function
Cytokine that acts as a physiological ligand for receptor tyrosine kinases LTK and ALK, leading to their activation. Cytokine-binding is sufficient to activate LTK. In contrast, ALKAL2-driven activation of ALK is coupled with heparin-binding to ALK. Stimulation of ALK signaling is involved in neural development and regulation of energy expenditure.
Tissue Specificity Widely expressed with highest levels in adrenal gland and modest levels in pancreas, testis and uterus.

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Epithelial ovarian cancer DIS56MH2 Strong Altered Expression [1]
Neoplasm DISZKGEW Strong Biomarker [1]
Neuroblastoma DISVZBI4 Limited Biomarker [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of ALK and LTK ligand 2 (ALKAL2). [3]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of ALK and LTK ligand 2 (ALKAL2). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of ALK and LTK ligand 2 (ALKAL2). [5]
Quercetin DM3NC4M Approved Quercetin increases the expression of ALK and LTK ligand 2 (ALKAL2). [6]
Panobinostat DM58WKG Approved Panobinostat increases the expression of ALK and LTK ligand 2 (ALKAL2). [7]
Malathion DMXZ84M Approved Malathion increases the expression of ALK and LTK ligand 2 (ALKAL2). [8]
Permethrin DMZ0Q1G Approved Permethrin increases the expression of ALK and LTK ligand 2 (ALKAL2). [8]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of ALK and LTK ligand 2 (ALKAL2). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of ALK and LTK ligand 2 (ALKAL2). [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of ALK and LTK ligand 2 (ALKAL2). [10]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of ALK and LTK ligand 2 (ALKAL2). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Genome-wide bioinformatics analysis reveals CTCFL is upregulated in high-grade epithelial ovarian cancer.Oncol Lett. 2019 Oct;18(4):4030-4039. doi: 10.3892/ol.2019.10736. Epub 2019 Aug 8.
2 Analysis of ALK, MYCN, and the ALK ligand ALKAL2 (FAM150B/AUG) in neuroblastoma patient samples with chromosome arm 2p rearrangements.Genes Chromosomes Cancer. 2020 Jan;59(1):50-57. doi: 10.1002/gcc.22790. Epub 2019 Sep 2.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
5 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
8 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
9 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
10 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
11 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.