General Information of Drug Off-Target (DOT) (ID: OTTV8N39)

DOT Name Tubulin beta-2A chain
Synonyms Tubulin beta class IIa
Gene Name TUBB2A
Related Disease
Complex cortical dysplasia with other brain malformations 5 ( )
Tubulinopathy ( )
UniProt ID
TBB2A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7NVN
Pfam ID
PF00091 ; PF03953
Sequence
MREIVHIQAGQCGNQIGAKFWEVISDEHGIDPTGSYHGDSDLQLERINVYYNEAAGNKYV
PRAILVDLEPGTMDSVRSGPFGQIFRPDNFVFGQSGAGNNWAKGHYTEGAELVDSVLDVV
RKESESCDCLQGFQLTHSLGGGTGSGMGTLLISKIREEYPDRIMNTFSVMPSPKVSDTVV
EPYNATLSVHQLVENTDETYSIDNEALYDICFRTLKLTTPTYGDLNHLVSATMSGVTTCL
RFPGQLNADLRKLAVNMVPFPRLHFFMPGFAPLTSRGSQQYRALTVPELTQQMFDSKNMM
AACDPRHGRYLTVAAIFRGRMSMKEVDEQMLNVQNKNSSYFVEWIPNNVKTAVCDIPPRG
LKMSATFIGNSTAIQELFKRISEQFTAMFRRKAFLHWYTGEGMDEMEFTEAESNMNDLVS
EYQQYQDATADEQGEFEEEEGEDEA
Function
Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
Tissue Specificity High expression in brain, where it represents 30% of all beta-tubulins.
KEGG Pathway
Phagosome (hsa04145 )
Gap junction (hsa04540 )
Motor proteins (hsa04814 )
Alzheimer disease (hsa05010 )
Parkinson disease (hsa05012 )
Amyotrophic lateral sclerosis (hsa05014 )
Huntington disease (hsa05016 )
Prion disease (hsa05020 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Pathogenic Escherichia coli infection (hsa05130 )
Salmonella infection (hsa05132 )
Reactome Pathway
Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane (R-HSA-190840 )
Gap junction assembly (R-HSA-190861 )
MHC class II antigen presentation (R-HSA-2132295 )
Separation of Sister Chromatids (R-HSA-2467813 )
Resolution of Sister Chromatid Cohesion (R-HSA-2500257 )
HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of ligand (R-HSA-3371497 )
Recruitment of NuMA to mitotic centrosomes (R-HSA-380320 )
Prefoldin mediated transfer of substrate to CCT/TriC (R-HSA-389957 )
Formation of tubulin folding intermediates by CCT/TriC (R-HSA-389960 )
Post-chaperonin tubulin folding pathway (R-HSA-389977 )
Recycling pathway of L1 (R-HSA-437239 )
Hedgehog 'off' state (R-HSA-5610787 )
Cilium Assembly (R-HSA-5617833 )
Intraflagellar transport (R-HSA-5620924 )
RHO GTPases activate IQGAPs (R-HSA-5626467 )
RHO GTPases Activate Formins (R-HSA-5663220 )
COPI-mediated anterograde transport (R-HSA-6807878 )
COPI-dependent Golgi-to-ER retrograde traffic (R-HSA-6811434 )
COPI-independent Golgi-to-ER retrograde traffic (R-HSA-6811436 )
Mitotic Prometaphase (R-HSA-68877 )
The role of GTSE1 in G2/M progression after G2 checkpoint (R-HSA-8852276 )
Carboxyterminal post-translational modifications of tubulin (R-HSA-8955332 )
HCMV Early Events (R-HSA-9609690 )
Assembly and cell surface presentation of NMDA receptors (R-HSA-9609736 )
Activation of AMPK downstream of NMDARs (R-HSA-9619483 )
Aggrephagy (R-HSA-9646399 )
EML4 and NUDC in mitotic spindle formation (R-HSA-9648025 )
Sealing of the nuclear envelope (NE) by ESCRT-III (R-HSA-9668328 )
Kinesins (R-HSA-983189 )
PKR-mediated signaling (R-HSA-9833482 )
Translocation of SLC2A4 (GLUT4) to the plasma membrane (R-HSA-1445148 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Complex cortical dysplasia with other brain malformations 5 DISQZQ69 Definitive Autosomal dominant [1]
Tubulinopathy DISB3627 Definitive Autosomal dominant [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Tubulin beta-2A chain affects the response to substance of Cisplatin. [24]
Arsenic DMTL2Y1 Approved Tubulin beta-2A chain increases the response to substance of Arsenic. [25]
PEITC DMOMN31 Phase 2 Tubulin beta-2A chain affects the binding of PEITC. [26]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Tubulin beta-2A chain. [3]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Tubulin beta-2A chain. [4]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Tubulin beta-2A chain. [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Tubulin beta-2A chain. [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Tubulin beta-2A chain. [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tubulin beta-2A chain. [8]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Tubulin beta-2A chain. [9]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Tubulin beta-2A chain. [10]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Tubulin beta-2A chain. [11]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Tubulin beta-2A chain. [12]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Tubulin beta-2A chain. [13]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Tubulin beta-2A chain. [14]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Tubulin beta-2A chain. [15]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Tubulin beta-2A chain. [16]
Testosterone Undecanoate DMZO10Y Approved Testosterone Undecanoate increases the expression of Tubulin beta-2A chain. [17]
Bleomycin DMNER5S Approved Bleomycin decreases the expression of Tubulin beta-2A chain. [12]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Tubulin beta-2A chain. [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Tubulin beta-2A chain. [18]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Tubulin beta-2A chain. [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Tubulin beta-2A chain. [20]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Tubulin beta-2A chain. [21]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Tubulin beta-2A chain. [22]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Tubulin beta-2A chain. [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 De novo mutations in the beta-tubulin gene TUBB2A cause simplified gyral patterning and infantile-onset epilepsy. Am J Hum Genet. 2014 Apr 3;94(4):634-41. doi: 10.1016/j.ajhg.2014.03.009.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
10 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
11 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
12 Development and validation of the TGx-HDACi transcriptomic biomarker to detect histone deacetylase inhibitors in human TK6 cells. Arch Toxicol. 2021 May;95(5):1631-1645. doi: 10.1007/s00204-021-03014-2. Epub 2021 Mar 26.
13 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
14 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
15 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
16 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
17 Levonorgestrel enhances spermatogenesis suppression by testosterone with greater alteration in testicular gene expression in men. Biol Reprod. 2009 Mar;80(3):484-92.
18 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
21 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
22 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
23 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
24 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
25 Gene expression levels in normal human lymphoblasts with variable sensitivities to arsenite: identification of GGT1 and NFKBIE expression levels as possible biomarkers of susceptibility. Toxicol Appl Pharmacol. 2008 Jan 15;226(2):199-205. doi: 10.1016/j.taap.2007.09.004. Epub 2007 Sep 15.
26 Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol. 2011 Oct 17;24(10):1735-43. doi: 10.1021/tx2002806. Epub 2011 Aug 26.