General Information of Drug Off-Target (DOT) (ID: OTU52TXX)

DOT Name tRNA modification GTPase GTPBP3, mitochondrial (GTPBP3)
Synonyms GTP-binding protein 3; Mitochondrial GTP-binding protein 1
Gene Name GTPBP3
Related Disease
Cardiac failure ( )
Combined oxidative phosphorylation defect type 23 ( )
Congestive heart failure ( )
Hypertrophic cardiomyopathy ( )
Leigh syndrome ( )
UniProt ID
GTPB3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01926 ; PF12631 ; PF10396
Sequence
MWRGLWTLAAQAARGPRRLCTRRSSGAPAPGSGATIFALSSGQGRCGIAVIRTSGPASGH
ALRILTAPRDLPLARHASLRLLSDPRSGEPLDRALVLWFPGPQSFTGEDCVEFHVHGGPA
VVSGVLQALGSVPGLRPAEAGEFTRRAFANGKLNLTEVEGLADLIHAETEAQRRQALRQL
DGELGHLCRGWAETLTKALAHVEAYIDFGEDDNLEEGVLEQADIEVRALQVALGAHLRDA
RRGQRLRSGVHVVVTGPPNAGKSSLVNLLSRKPVSIVSPEPGTTRDVLETPVDLAGFPVL
LSDTAGLREGVGPVEQEGVRRARERLEQADLILAMLDASDLASPSSCNFLATVVASVGAQ
SPSDSSQRLLLVLNKSDLLSPEGPGPGPDLPPHLLLSCLTGEGLDGLLEALRKELAAVCG
DPSTDPPLLTRARHQHHLQGCLDALGHYKQSKDLALAAEALRVARGHLTRLTGGGGTEEI
LDIIFQDFCVGK
Function GTPase involved in the 5-carboxymethylaminomethyl modification (mnm(5)s(2)U34) of the wobble uridine base in mitochondrial tRNAs.
Tissue Specificity Ubiquitously expressed.
Reactome Pathway
tRNA modification in the mitochondrion (R-HSA-6787450 )

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cardiac failure DISDC067 Strong Genetic Variation [1]
Combined oxidative phosphorylation defect type 23 DISCKVY1 Strong Autosomal recessive [2]
Congestive heart failure DIS32MEA Strong Genetic Variation [1]
Hypertrophic cardiomyopathy DISQG2AI moderate Genetic Variation [3]
Leigh syndrome DISWQU45 Moderate Autosomal recessive [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of tRNA modification GTPase GTPBP3, mitochondrial (GTPBP3). [5]
------------------------------------------------------------------------------------
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of tRNA modification GTPase GTPBP3, mitochondrial (GTPBP3). [6]
Estradiol DMUNTE3 Approved Estradiol affects the expression of tRNA modification GTPase GTPBP3, mitochondrial (GTPBP3). [7]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of tRNA modification GTPase GTPBP3, mitochondrial (GTPBP3). [8]
Menadione DMSJDTY Approved Menadione affects the expression of tRNA modification GTPase GTPBP3, mitochondrial (GTPBP3). [9]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of tRNA modification GTPase GTPBP3, mitochondrial (GTPBP3). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of tRNA modification GTPase GTPBP3, mitochondrial (GTPBP3). [11]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of tRNA modification GTPase GTPBP3, mitochondrial (GTPBP3). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses.PLoS Genet. 2017 Jul 21;13(7):e1006921. doi: 10.1371/journal.pgen.1006921. eCollection 2017 Jul.
2 Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am J Hum Genet. 2014 Dec 4;95(6):708-20. doi: 10.1016/j.ajhg.2014.10.017. Epub 2014 Nov 26.
3 Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism.Nucleic Acids Res. 2019 Jun 4;47(10):5341-5355. doi: 10.1093/nar/gkz218.
4 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
8 Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. Environ Health Perspect. 2008 Apr;116(4):524-31. doi: 10.1289/ehp.10861.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.