General Information of Disease (ID: DISQG2AI)

Disease Name Hypertrophic cardiomyopathy
Synonyms
HCM - hypertrophic cardiomyopathy; familial hypertrophic cardiomyopathy; obstructive hypertrophic cardiomyopathy; hypertrophic cardiomyopathy; hypertrophic obstructive cardiomyopathy; hypertrophic subaortic stenosis
Disease Class BC43: Cardiomyopathy
Definition A condition in which the myocardium is hypertrophied without an obvious cause. The hypertrophy is generally asymmetric and may be associated with obstruction of the ventricular outflow tract.
Disease Hierarchy
DISYBB39: Intrinsic cardiomyopathy
DISQG2AI: Hypertrophic cardiomyopathy
ICD Code
ICD-11
ICD-11: BC43.1
Disease Identifiers
MONDO ID
MONDO_0005045
MESH ID
D002312
UMLS CUI
C0007194
MedGen ID
2881
HPO ID
HP:0001639
Orphanet ID
217569
SNOMED CT ID
233873004

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 1 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Aficamten DMJL09Z Phase 3 Small molecule [1]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 151 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
VCL OTPQ0JYS Disputed Autosomal dominant [2]
TMPO OTL68EL4 No Known Autosomal dominant [2]
TNNC2 OTRD1OTR No Known Autosomal dominant [2]
SRI OT4R3EAC Refuted Autosomal dominant [61]
ACAD9 OT4HITJ6 Limited Genetic Variation [62]
ACADVL OT50L4XB Limited Genetic Variation [63]
ACTA1 OTOVGLPG Limited Biomarker [64]
BOLA3 OTDEDY0S Limited Genetic Variation [65]
BRCA1 OT5BN6VH Limited Biomarker [66]
COA5 OTK12EG7 Limited Biomarker [67]
COX15 OTUIYHIW Limited Genetic Variation [68]
DSG2 OTJPB2TO Limited Genetic Variation [69]
ELAC2 OTY3BOF6 Limited Genetic Variation [70]
KCNJ8 OTZ8G8FE Limited Biomarker [71]
KLF10 OT4F4UGS Limited Autosomal dominant [2]
MRPL3 OT4WV1WL Limited Biomarker [72]
MRPL44 OT27ZC26 Limited Genetic Variation [73]
MRPS22 OTIVNAJL Limited Biomarker [74]
MYH6 OT3YNCH1 Limited Autosomal dominant [2]
ND1 OTCLGIXV Limited Genetic Variation [75]
NDUFAF1 OTYK9JU6 Limited Genetic Variation [76]
NEXN OTKB0B0H Limited Autosomal dominant [2]
OBSCN OTT14OVX Limited Autosomal dominant [2]
PDLIM3 OTVXQC81 Limited Autosomal dominant [2]
RBM20 OTOQZNKS Limited Autosomal dominant [2]
RPS6KB1 OTAELNGX Limited Autosomal dominant [2]
RYR2 OT0PF19E Limited Autosomal dominant [2]
SHOC2 OTUNQ2CT Limited Genetic Variation [77]
SMYD1 OTPAH75C Limited Autosomal dominant [61]
SURF1 OTAINRSS Limited Genetic Variation [78]
TMEM70 OTLTKYXG Limited Genetic Variation [79]
TTN OT0LZ058 Limited Autosomal dominant [2]
ANKRD1 OTHJ7JV9 Disputed Autosomal dominant [2]
CACNB2 OT53K8W2 Disputed Autosomal dominant [2]
CALR3 OTO4WCU9 Disputed Autosomal dominant [2]
CASQ2 OT09MNQ8 Disputed Autosomal dominant [2]
DSP OTB2MOP8 Disputed Autosomal dominant [2]
KCNQ1 OT8SPJNX Disputed Autosomal dominant [2]
MYLK2 OTVISMUK Disputed Autosomal dominant [2]
MYOM1 OTWALWGY Disputed Autosomal dominant [2]
MYOZ2 OTMEIQJA Disputed Autosomal dominant [2]
MYPN OTHTOFDU Disputed Autosomal dominant [2]
TCAP OTQQMJ94 Disputed Autosomal dominant [2]
FHL2 OT0OAYWT moderate Genetic Variation [80]
FHOD3 OT1WUBQX Moderate Autosomal dominant [81]
GTPBP3 OTU52TXX moderate Genetic Variation [82]
JPH2 OTL9YH7V Moderate Autosomal dominant [2]
KLHL24 OTWZSX5C Moderate Autosomal recessive [2]
LUM OTSRC874 moderate Altered Expression [83]
LZTR1 OTIDM6XO moderate Genetic Variation [84]
MRPS14 OTA8H3LB moderate Genetic Variation [85]
MYBPC2 OTCXSB6A moderate Genetic Variation [86]
MYH14 OT1TZEJK moderate Genetic Variation [87]
MYL4 OTURFCSE moderate Altered Expression [88]
MYL7 OT7ZNDP4 moderate Altered Expression [89]
NDUFS1 OTTIZDFR moderate Biomarker [37]
PDLIM5 OTLQVV22 moderate Genetic Variation [90]
TRIM63 OTUSWA74 Moderate Autosomal recessive [2]
ACTA2 OTEDLG8E Strong Genetic Variation [91]
ACTN2 OT9FOLD7 Strong Genetic Variation [92]
ADAM22 OT452ZDC Strong Altered Expression [93]
AKAP9 OT7Z2YRP Strong Genetic Variation [94]
ARSD OTAHW9M8 Strong Biomarker [95]
ATAD3A OTWF6HBP Strong Genetic Variation [96]
BSCL2 OT73V6Y4 Strong Biomarker [97]
CA8 OT9Y8GA8 Strong Biomarker [98]
CAB39 OT2CL9ST Strong Biomarker [99]
CAV3 OTWSFDB4 Strong Genetic Variation [100]
CAVIN1 OTFO915U Strong Biomarker [101]
CCDC47 OTUIN61P Strong Biomarker [102]
CELF1 OT6JQ5RS Strong Biomarker [103]
CELF2 OTLJJ4VT Strong Altered Expression [103]
CEP85L OTSHJFOT Strong CausalMutation [104]
CHD1L OT7CZK7C Strong Biomarker [105]
CNTN3 OTC1274J Strong Biomarker [106]
CTNNA3 OT9Z0P1E Strong Genetic Variation [107]
DES OTI09KBW Strong Genetic Variation [108]
DPP6 OTWW3H0K Strong Biomarker [71]
DTNB OTX1HKM7 Strong Altered Expression [109]
ELN OTFSO7PG Strong Altered Expression [109]
FERMT2 OTZNPWWX Strong Biomarker [110]
FKTN OTQ9GCXL Strong Genetic Variation [111]
FLNC OT3F8J6Y Strong Genetic Variation [112]
FZD1 OTZATHVS Strong Altered Expression [113]
FZD5 OTXFFY56 Strong Altered Expression [113]
GDF11 OTOSNMND Strong Altered Expression [114]
HEY2 OTU4J3ZI Strong Therapeutic [115]
HLA-C OTV38BUJ Strong Genetic Variation [116]
IARS1 OT9WXH5N Strong Genetic Variation [117]
IARS2 OTDX4SCA Strong Genetic Variation [117]
IDH2 OTTQA4PB Strong Biomarker [118]
IKBKE OT5VYOSM Strong Biomarker [119]
IMMT OTBDSLE7 Strong Genetic Variation [120]
INS-IGF2 OTZR74BO Strong Genetic Variation [121]
ITGB1BP2 OTHYX9F3 Strong Genetic Variation [122]
KARS1 OT0EU4SV Strong Genetic Variation [123]
KAT8 OT5LPQTR Strong Biomarker [124]
LMOD2 OTFXHQFL Strong Genetic Variation [125]
MAPK8IP3 OT0X8ACY Strong Altered Expression [126]
MEF2A OTV2SF6E Strong Biomarker [127]
MEF2C OTZGF1Y5 Strong Altered Expression [128]
MEOX1 OTJEMT2D Strong Altered Expression [129]
MFAP1 OTZN4FT3 Strong Genetic Variation [59]
MINDY3 OT6YZPWC Strong Biomarker [98]
MRAS OTNCVCQW Strong Genetic Variation [130]
MTO1 OT7HCZ1D Strong Biomarker [131]
MYBPC1 OTRPN93S Strong Genetic Variation [132]
MYBPH OTQJBPUR Strong Genetic Variation [133]
MYL1 OTDUYR4U Strong Biomarker [134]
MYL12B OTXMLQOT Strong Genetic Variation [135]
MYL9 OT6B22JB Strong Genetic Variation [135]
MYOCD OTSJNHTH Strong Genetic Variation [136]
NEBL OT2WH1NC Strong Biomarker [71]
NOL3 OT1K0L0D Strong Genetic Variation [66]
NOS1AP OTDFOBRU Strong Genetic Variation [137]
NPPA OTMQNTNX Strong Altered Expression [114]
NRAP OTO6H3YF Strong Genetic Variation [138]
PELI1 OTMLBCLC Strong Genetic Variation [139]
PIK3C3 OTLUM9L7 Strong Biomarker [4]
PRB1 OTV0SYMD Strong Genetic Variation [140]
PRDM6 OTKY12D9 Strong Genetic Variation [139]
PRH1 OTQZ6HX0 Strong Altered Expression [141]
RASSF1 OTEZIPB7 Strong Therapeutic [142]
RGS3 OTYG5OXI Strong Genetic Variation [143]
RING1 OTCWTAX0 Strong Biomarker [144]
RIT1 OTVNOGOH Strong Biomarker [145]
SCD5 OTSSUQ3Z Strong Biomarker [146]
SGCD OTRBL3NQ Strong Genetic Variation [147]
SMC1A OT9ZMRK9 Strong Biomarker [148]
SNTA1 OTUICTGZ Strong Biomarker [71]
SOS1 OTTCWXC3 Strong Genetic Variation [149]
SUCLG1 OTDCSPXH Strong Biomarker [150]
TBCA OTCCWMGK Strong Biomarker [37]
TPM2 OTA1L0P8 Strong Genetic Variation [151]
TRIM55 OTY5YQFX Strong Genetic Variation [152]
ACTC1 OTJU04B1 Definitive Autosomal dominant [2]
ALPK3 OTLUYSMO Definitive Autosomal recessive [2]
COA6 OTT52V2I Definitive Genetic Variation [153]
CSRP3 OTECBJMV Definitive Semidominant [2]
LDB3 OTGQL1AM Definitive Genetic Variation [154]
MARCKSL1 OT13J2FM Definitive Biomarker [155]
MUC2 OT3X4QVX Definitive Biomarker [155]
MYBPC3 OT8IG00B Definitive Autosomal dominant [2]
MYH7 OT4Z9T8N Definitive Autosomal dominant [2]
MYL2 OT78PC0C Definitive Autosomal dominant [2]
MYL3 OTKD3RSX Definitive Autosomal dominant [2]
PRKAG2 OTHTAM54 Definitive Autosomal dominant [2]
TNNC1 OT9A0FL4 Definitive Autosomal dominant [2]
TNNI3 OT65E12V Definitive Autosomal dominant [2]
TNNT2 OT80NN7R Definitive Autosomal dominant [2]
TPM1 OTD73X6R Definitive Autosomal dominant [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 151 DOT(s)
This Disease Is Related to 64 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
TNNC2 TTYUMF5 No Known Autosomal dominant [2]
AGPAT2 TT9AYVR Limited Biomarker [3]
CRYAB TT7RUHB Limited Biomarker [4]
FHL1 TTI7ENL Limited Biomarker [5]
HLA-B TTGS10J Limited Biomarker [6]
KCNQ1 TT846HF Limited Biomarker [7]
MYLK2 TTHLGB2 Limited Biomarker [8]
PTPN11 TT7WUAV Limited Genetic Variation [9]
RORC TTGV6LY Limited Biomarker [10]
RPS6KB1 TTG0U4H Limited Autosomal dominant [2]
MYLK2 TTHLGB2 Disputed Autosomal dominant [2]
EDN1 TTJR60Z moderate Biomarker [11]
FASN TT7AOUD moderate Biomarker [12]
HSPD1 TT9HL5R moderate Biomarker [13]
LAMP2 TTULDG7 moderate Genetic Variation [14]
MGAM TTXWASR moderate Altered Expression [15]
OPA1 TTTU49Q moderate Genetic Variation [16]
SCN5A TTZOVE0 moderate Genetic Variation [17]
SLC9A1 TTGSEFH moderate Biomarker [18]
ACE2 TTUI5H7 Strong Genetic Variation [19]
ADM TTV14YH Strong Biomarker [20]
ADRB1 TTR6W5O Strong Biomarker [21]
AGTR1 TT8DBY3 Strong Genetic Variation [22]
ATP2A2 TTE6THL Strong Altered Expression [23]
CACNA1C TTZIFHC Strong Genetic Variation [24]
CAPN2 TTG5QB7 Strong Biomarker [25]
CASP3 TTPF2QI Strong Biomarker [26]
CD36 TTPJMCU Strong Biomarker [27]
CLCN3 TT8XNZ7 Strong Biomarker [28]
CRTC1 TT4GO0F Strong Biomarker [29]
DMPK TTZQTY2 Strong Altered Expression [30]
EDN2 TTMR0OP Strong Genetic Variation [31]
ESRRG TT9ZRHB Strong Altered Expression [32]
GAA TTLPC70 Strong CausalMutation [33]
GLA TTIS03D Strong Biomarker [34]
HCN4 TTQP04A Strong Altered Expression [35]
HMBS TTT0HW3 Strong Genetic Variation [36]
HSPB1 TT9AZWY Strong Biomarker [37]
HTATIP2 TTC6IX5 Strong Altered Expression [38]
ICAM1 TTA1L39 Strong Biomarker [39]
INS TTZOPHG Strong Biomarker [40]
KDM4A TTZHPB8 Strong Altered Expression [41]
LYVE1 TTG8DNU Strong Biomarker [42]
MAP2K1 TTIDAPM Strong Biomarker [43]
MAP3K11 TTETX6Q Strong Altered Expression [44]
MYC TTNQ5ZP Strong Biomarker [45]
NME1 TTDY8JH Strong Biomarker [37]
NPPB TTY63XT Strong Biomarker [11]
NPTX2 TTNJ5A6 Strong Genetic Variation [46]
POMC TT21AKM Strong Biomarker [47]
PRKCH TTONI0R Strong Genetic Variation [48]
REN TTB2MXP Strong Biomarker [49]
SCD TT6RIOV Strong Genetic Variation [50]
SCN10A TT90XZ8 Strong Genetic Variation [51]
SLC25A4 TTU5A6Q Strong Biomarker [52]
SLC5A1 TT2UE56 Strong Genetic Variation [53]
TRPM3 TTO3TD8 Strong Altered Expression [54]
TTR TTPOYU7 Strong Genetic Variation [55]
MYBPC3 TT9WOBN Definitive Autosomal dominant [2]
MYH7 TTNIMDP Definitive Autosomal dominant [2]
RAF1 TTAN5W2 Definitive Genetic Variation [56]
TNNC1 TT8RDXP Definitive Autosomal dominant [2]
TNNI3 TTNLDK6 Definitive Autosomal dominant [2]
TNNT2 TTWAS18 Definitive Autosomal dominant [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 64 DTT(s)
This Disease Is Related to 4 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
CACNB2 DTBZWL4 Disputed Autosomal dominant [2]
KCNQ1 DTYE3RN Disputed Autosomal dominant [2]
SLC25A3 DTCRIWV moderate Biomarker [57]
SLC31A1 DTP8L4F Strong Genetic Variation [58]
------------------------------------------------------------------------------------
This Disease Is Related to 3 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
SI DE5EO4Y moderate Altered Expression [15]
APRT DE2MV1R Strong Genetic Variation [59]
NMNAT2 DE2HB58 Strong Biomarker [60]
------------------------------------------------------------------------------------

References

1 ClinicalTrials.gov (NCT05767346) A Phase 3, Multi-center, Randomized, Double-blind Trial to Evaluate the Efficacy and Safety of Aficamten Compared to Metoprolol in Adults With Symptomatic Obstructive Hypertrophic Cardiomyopathy. U.S.National Institutes of Health.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Genotype-phenotype relationships in Berardinelli-Seip congenital lipodystrophy.J Med Genet. 2002 Oct;39(10):722-33. doi: 10.1136/jmg.39.10.722.
4 Vps34 regulates myofibril proteostasis to prevent hypertrophic cardiomyopathy.JCI Insight. 2017 Jan 12;2(1):e89462. doi: 10.1172/jci.insight.89462.
5 Molecular autopsy and family screening in a young case of sudden cardiac death reveals an unusually severe case of FHL1 related hypertrophic cardiomyopathy.Mol Genet Genomic Med. 2019 Aug;7(8):e841. doi: 10.1002/mgg3.841. Epub 2019 Jul 10.
6 HLA complex and hypertrophic cardiomyopathy in a European population.Eur Heart J. 1985 Nov;6(11):963-6. doi: 10.1093/oxfordjournals.eurheartj.a061795.
7 Dual LQT1 and HCM phenotypes associated with tetrad heterozygous mutations in KCNQ1, MYH7, MYLK2, and TMEM70 genes in a three-generation Chinese family.Europace. 2016 Apr;18(4):602-9. doi: 10.1093/europace/euv043. Epub 2015 Mar 29.
8 Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes.Eur Heart J. 2017 Dec 7;38(46):3461-3468. doi: 10.1093/eurheartj/ehw603.
9 The spectrum of genetic variants and phenotypic features of Southeast Asian patients with Noonan syndrome.Mol Genet Genomic Med. 2019 Apr;7(4):e00581. doi: 10.1002/mgg3.581. Epub 2019 Feb 19.
10 Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation.J Clin Invest. 2011 Mar;121(3):1026-43. doi: 10.1172/JCI44972. Epub 2011 Feb 21.
11 Associations Between Multiple Circulating Biomarkers and the Presence of Atrial Fibrillation in Hypertrophic Cardiomyopathy with or Without Left Ventricular Outflow Tract Obstruction.Int Heart J. 2019 Mar 20;60(2):327-335. doi: 10.1536/ihj.18-438. Epub 2019 Jan 10.
12 Systematic identification and analysis of dysregulated miRNA and transcription factor feed-forward loops in hypertrophic cardiomyopathy.J Cell Mol Med. 2019 Jan;23(1):306-316. doi: 10.1111/jcmm.13928. Epub 2018 Oct 19.
13 Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy.Cells. 2019 Jul 18;8(7):741. doi: 10.3390/cells8070741.
14 A new phenotype of severe dilated cardiomyopathy associated with a mutation in the LAMP2 gene previously known to cause hypertrophic cardiomyopathy in the context of Danon disease.Eur J Med Genet. 2019 Jan;62(1):77-80. doi: 10.1016/j.ejmg.2018.05.015. Epub 2018 May 24.
15 Long-term outcome and unmet needs in infantile-onset Pompe disease.Ann Transl Med. 2019 Jul;7(13):283. doi: 10.21037/atm.2019.04.70.
16 Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation. J Med Genet. 2016 Feb;53(2):127-31. doi: 10.1136/jmedgenet-2015-103361. Epub 2015 Nov 11.
17 Analysis of SCN5A Gene Variants in East Slovak Patients with Cardiomyopathy.J Clin Lab Anal. 2017 Mar;31(2):e22037. doi: 10.1002/jcla.22037. Epub 2016 Aug 24.
18 Exploring miRNA-mRNA regulatory network in cardiac pathology in Na(+)/H(+) exchanger isoform 1 transgenic mice.Physiol Genomics. 2018 Oct 1;50(10):846-861. doi: 10.1152/physiolgenomics.00048.2018. Epub 2018 Jul 20.
19 Polymorphisms of angiotensin-converting enzyme 2 gene associated with magnitude of left ventricular hypertrophy in male patients with hypertrophic cardiomyopathy.Chin Med J (Engl). 2008 Jan 5;121(1):27-31.
20 Changes in expression of adrenomedullin in the myocardium of streptozotocin-induced diabetic rats.Chin Med J (Engl). 2007 Feb 5;120(3):187-91.
21 The relationship between (1) -adrenergic and M(2) -muscarinic receptor autoantibodies and hypertrophic cardiomyopathy.Exp Physiol. 2020 Mar;105(3):522-530. doi: 10.1113/EP088263. Epub 2020 Jan 29.
22 Renin-angiotensin system gene polymorphisms as potential modifiers of hypertrophic and dilated cardiomyopathy phenotypes.Mol Cell Biochem. 2017 Mar;427(1-2):1-11. doi: 10.1007/s11010-016-2891-y. Epub 2017 Jan 24.
23 Reduced myocardial sarcoplasmic reticulum Ca(2+)-ATPase mRNA expression and biphasic force-frequency relations in patients with hypertrophic cardiomyopathy.Circulation. 2001 Aug 7;104(6):658-63. doi: 10.1161/hc3101.093869.
24 The Cumulative Effects of the MYH7-V878A and CACNA1C-A1594V Mutations in a Chinese Family with Hypertrophic Cardiomyopathy.Cardiology. 2017;138(4):228-237. doi: 10.1159/000478900. Epub 2017 Sep 2.
25 Nuclear Translocation of Calpain-2 Mediates Apoptosis of Hypertrophied Cardiomyocytes in Transverse Aortic Constriction Rat.J Cell Physiol. 2015 Nov;230(11):2743-54. doi: 10.1002/jcp.24999.
26 Forkhead class O transcription factor 3a activation and Sirtuin1 overexpression in the hypertrophied myocardium of the diabetic Goto-Kakizaki rat.J Hypertens. 2008 Feb;26(2):334-44. doi: 10.1097/HJH.0b013e3282f293c8.
27 Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy.J Mol Med (Berl). 2009 Apr;87(4):411-22. doi: 10.1007/s00109-008-0436-x. Epub 2009 Feb 3.
28 MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM.J Transl Med. 2018 Jun 9;16(1):161. doi: 10.1186/s12967-018-1534-3.
29 Mechanistic role of the CREB-regulated transcription coactivator 1 in cardiac hypertrophy.J Mol Cell Cardiol. 2019 Feb;127:31-43. doi: 10.1016/j.yjmcc.2018.12.001. Epub 2018 Dec 4.
30 Transgenic overexpression of human DMPK accumulates into hypertrophic cardiomyopathy, myotonic myopathy and hypotension traits of myotonic dystrophy.Hum Mol Genet. 2004 Oct 15;13(20):2505-18. doi: 10.1093/hmg/ddh266. Epub 2004 Aug 18.
31 A985G polymorphism of the endothelin-2 gene and atrial fibrillation in patients with hypertrophic cardiomyopathy.Circ J. 2007 Dec;71(12):1932-6. doi: 10.1253/circj.71.1932.
32 Estrogen-related receptor gamma induces cardiac hypertrophy by activating GATA4.J Mol Cell Cardiol. 2013 Dec;65:88-97. doi: 10.1016/j.yjmcc.2013.09.011. Epub 2013 Sep 29.
33 c.1437G>A intron 9 substitution on acid -glucosidase gene associated with classic infantile-onset Pompe disease phenotype.BMJ Case Rep. 2015 Jul 9;2015:bcr2015210688. doi: 10.1136/bcr-2015-210688.
34 GLA Gene Mutation in Hypertrophic Cardiomyopathy with a New Variant Description: Is it Fabry's Disease?.Arq Bras Cardiol. 2019 Jul 10;113(1):77-84. doi: 10.5935/abc.20190112.
35 Expression of hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN4) is increased in hypertrophic cardiomyopathy.Cardiovasc Pathol. 2011 Mar-Apr;20(2):110-3. doi: 10.1016/j.carpath.2010.01.007. Epub 2010 Mar 6.
36 Ubiquitin-proteasome system impairment caused by a missense cardiac myosin-binding protein C mutation and associated with cardiac dysfunction in hypertrophic cardiomyopathy.J Mol Biol. 2008 Dec 26;384(4):896-907. doi: 10.1016/j.jmb.2008.09.070. Epub 2008 Oct 7.
37 An integrated approach to proteome analysis: identification of proteins associated with cardiac hypertrophy.Anal Biochem. 1998 Apr 10;258(1):1-18. doi: 10.1006/abio.1998.2566.
38 TIP30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation.EMBO Mol Med. 2019 Oct;11(10):e10018. doi: 10.15252/emmm.201810018. Epub 2019 Aug 30.
39 The protective effect of thalidomide on left ventricular function in a rat model of diabetic cardiomyopathy.Eur J Heart Fail. 2010 Oct;12(10):1051-60. doi: 10.1093/eurjhf/hfq103. Epub 2010 Jul 2.
40 Iatrogenic neonatal hypertrophic cardiomyopathy.Pediatr Cardiol. 1996 Sep-Oct;17(5):335-9. doi: 10.1007/s002469900075.
41 The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice.J Clin Invest. 2011 Jun;121(6):2447-56. doi: 10.1172/JCI46277. Epub 2011 May 9.
42 Elevated lymphatic vessel density measured by Lyve-1 expression in areas of replacement fibrosis in the ventricular septum of patients with hypertrophic obstructive cardiomyopathy (HOCM).Heart Vessels. 2020 Jan;35(1):78-85. doi: 10.1007/s00380-019-01463-5. Epub 2019 Jun 27.
43 Inducible Pluripotent Stem Cell-Derived Cardiomyocytes Reveal Aberrant Extracellular Regulated Kinase 5 and Mitogen-Activated Protein Kinase Kinase 1/2 Signaling Concomitantly Promote Hypertrophic Cardiomyopathy in RAF1-Associated Noonan Syndrome.Circulation. 2019 Jul 16;140(3):207-224. doi: 10.1161/CIRCULATIONAHA.118.037227. Epub 2019 Jun 5.
44 Mixed lineage kinase-3 prevents cardiac dysfunction and structural remodeling with pressure overload.Am J Physiol Heart Circ Physiol. 2019 Jan 1;316(1):H145-H159. doi: 10.1152/ajpheart.00029.2018. Epub 2018 Oct 26.
45 Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy.Int J Cardiol. 2013 Jan 20;162(3):199-209. doi: 10.1016/j.ijcard.2011.07.083. Epub 2011 Oct 15.
46 Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease.Eur J Heart Fail. 2010 Feb;12(2):114-21. doi: 10.1093/eurjhf/hfp186.
47 [Hypertrophic myocardiopathy during the corticotropin treatment of infantile spasms].An Esp Pediatr. 1996 May;44(5):515-6.
48 Genetic association between 1425G/A SNP in PRKCH and hypertrophic cardiomyopathy in a Chinese population.Oncotarget. 2017 Oct 31;8(70):114839-114844. doi: 10.18632/oncotarget.22214. eCollection 2017 Dec 29.
49 Renin-angiotensin-aldosterone blockade reduces atrial fibrillation in hypertrophic cardiomyopathy.Heart. 2018 Aug;104(15):1276-1283. doi: 10.1136/heartjnl-2017-312573. Epub 2018 Jan 25.
50 Assessment of the relationship between the ambulatory electrocardiography-based micro T-wave alternans and the predicted risk score of sudden cardiac death at 5 years in patients with hypertrophic cardiomyopathy.Anatol J Cardiol. 2018 Sep;20(3):165-173. doi: 10.14744/AnatolJCardiol.2018.15945.
51 Association Between Genetic Variation in the SCN10A Gene and Cardiac Conduction Abnormalities in Patients With Hypertrophic Cardiomyopathy.Int Heart J. 2015;56(4):421-7. doi: 10.1536/ihj.14-411. Epub 2015 Jun 24.
52 Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples.Genet Med. 2017 Feb;19(2):192-203. doi: 10.1038/gim.2016.90. Epub 2016 Aug 17.
53 Chronic Pressure Overload Induces Cardiac Hypertrophy and Fibrosis via Increases in SGLT1 and IL-18 Gene Expression in Mice.Int Heart J. 2018 Sep 26;59(5):1123-1133. doi: 10.1536/ihj.17-565. Epub 2018 Aug 11.
54 MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations.J Mol Cell Cardiol. 2013 Dec;65:59-66. doi: 10.1016/j.yjmcc.2013.09.012. Epub 2013 Sep 29.
55 Native T1 and Extracellular Volume inTransthyretin Amyloidosis.JACC Cardiovasc Imaging. 2019 May;12(5):810-819. doi: 10.1016/j.jcmg.2018.02.006. Epub 2018 Mar 14.
56 Genetic landscape of RASopathies in Chinese: Three decades' experience in Hong Kong.Am J Med Genet C Semin Med Genet. 2019 Jun;181(2):208-217. doi: 10.1002/ajmg.c.31692. Epub 2019 Mar 21.
57 Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation. Am J Hum Genet. 2007 Mar;80(3):478-84. doi: 10.1086/511788. Epub 2007 Jan 10.
58 The mitochondrial metallochaperone SCO1 maintains CTR1 at the plasma membrane to preserve copper homeostasis in the murine heart.Hum Mol Genet. 2017 Dec 1;26(23):4617-4628. doi: 10.1093/hmg/ddx344.
59 Cardiac transplant in a family pedigree of hypertrophic cardiomyopathy secondary to a mutation in the AMP gene.BMJ Case Rep. 2013 Aug 30;2013:bcr2013009929. doi: 10.1136/bcr-2013-009929.
60 Nmnat2 protects cardiomyocytes from hypertrophy via activation of SIRT6.FEBS Lett. 2012 Mar 23;586(6):866-74. doi: 10.1016/j.febslet.2012.02.014. Epub 2012 Feb 20.
61 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
62 Assembly defects of multiple respiratory chain complexes in a child with cardiac hypertrophy associated with a novel ACAD9 mutation.Mol Genet Metab. 2017 Jul;121(3):224-226. doi: 10.1016/j.ymgme.2017.05.002. Epub 2017 May 4.
63 Treatable massive pericardial effusion and hypertrophic cardiomyopathy in an infant with a novel homozygous ACADVL mutation: A case report.Medicine (Baltimore). 2018 May;97(20):e10813. doi: 10.1097/MD.0000000000010813.
64 Nemaline myopathy with dilated cardiomyopathy in childhood.Pediatrics. 2013 Jun;131(6):e1986-90. doi: 10.1542/peds.2012-1139. Epub 2013 May 6.
65 An infant case of diffuse cerebrospinal lesions and cardiomyopathy caused by a BOLA3 mutation.Brain Dev. 2018 Jun;40(6):484-488. doi: 10.1016/j.braindev.2018.02.004. Epub 2018 Mar 2.
66 Experiences of predictive testing in young people at risk of Huntington's disease, familial cardiomyopathy or hereditary breast and ovarian cancer.Eur J Hum Genet. 2014 Mar;22(3):396-401. doi: 10.1038/ejhg.2013.143. Epub 2013 Jul 17.
67 A mutation in C2orf64 causes impaired cytochrome c oxidase assembly and mitochondrial cardiomyopathy.Am J Hum Genet. 2011 Apr 8;88(4):488-93. doi: 10.1016/j.ajhg.2011.03.002. Epub 2011 Mar 31.
68 Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency.Hum Mol Genet. 2003 Oct 15;12(20):2693-702. doi: 10.1093/hmg/ddg284. Epub 2003 Aug 19.
69 Sudden death in mild hypertrophic cardiomyopathy with compound DSG2/DSC2/MYH6 mutations: Revisiting phenotype after genetic assessment in a master runner athlete.J Electrocardiol. 2019 Mar-Apr;53:95-99. doi: 10.1016/j.jelectrocard.2019.01.002. Epub 2019 Jan 2.
70 Mutations in ELAC2 associated with hypertrophic cardiomyopathy impair mitochondrial tRNA 3'-end processing.Hum Mutat. 2019 Oct;40(10):1731-1748. doi: 10.1002/humu.23777. Epub 2019 Jun 18.
71 Genetics of sudden cardiac death syndromes.Curr Opin Cardiol. 2011 May;26(3):196-203. doi: 10.1097/HCO.0b013e3283459893.
72 Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy.Hum Mutat. 2011 Nov;32(11):1225-31. doi: 10.1002/humu.21562. Epub 2011 Sep 14.
73 MRPL44 mutations cause a slowly progressive multisystem disease with childhood-onset hypertrophic cardiomyopathy.Neurogenetics. 2015 Oct;16(4):319-23. doi: 10.1007/s10048-015-0444-2. Epub 2015 Mar 24.
74 Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy.Eur J Hum Genet. 2011 Apr;19(4):394-9. doi: 10.1038/ejhg.2010.214. Epub 2010 Dec 29.
75 A novel m.3395A>G missense mutation in the mitochondrial ND1 gene associated with the new tRNA(Ile) m.4316A>G mutation in a patient with hypertrophic cardiomyopathy and profound hearing loss.Biochem Biophys Res Commun. 2011 Jan 7;404(1):504-10. doi: 10.1016/j.bbrc.2010.12.012. Epub 2010 Dec 6.
76 Mutations in the mitochondrial complex I assembly factor NDUFAF1 cause fatal infantile hypertrophic cardiomyopathy.J Med Genet. 2011 Oct;48(10):691-7. doi: 10.1136/jmedgenet-2011-100340.
77 Clinical and functional characterization of a novel RASopathy-causing SHOC2 mutation associated with prenatal-onset hypertrophic cardiomyopathy.Hum Mutat. 2019 Aug;40(8):1046-1056. doi: 10.1002/humu.23767. Epub 2019 May 6.
78 Mutation screening in patients with isolated cytochrome c oxidase deficiency.Pediatr Res. 2003 Feb;53(2):224-30. doi: 10.1203/01.PDR.0000048100.91730.6A.
79 Milder clinical course of Type IV 3-methylglutaconic aciduria due to a novel mutation in TMEM70.Mol Genet Metab. 2010 Oct-Nov;101(2-3):282-5. doi: 10.1016/j.ymgme.2010.07.012. Epub 2010 Jul 24.
80 FHL2 expression and variants in hypertrophic cardiomyopathy.Basic Res Cardiol. 2014;109(6):451. doi: 10.1007/s00395-014-0451-8. Epub 2014 Oct 31.
81 Formin Homology 2 Domain Containing 3 (FHOD3) Is a Genetic Basis for Hypertrophic Cardiomyopathy. J Am Coll Cardiol. 2018 Nov 13;72(20):2457-2467. doi: 10.1016/j.jacc.2018.10.001.
82 Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism.Nucleic Acids Res. 2019 Jun 4;47(10):5341-5355. doi: 10.1093/nar/gkz218.
83 Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy.Circ Genom Precis Med. 2018 Dec;11(12):e001974. doi: 10.1161/CIRCGEN.117.001974.
84 Clinical and mutation profile of pediatric patients with RASopathy-associated hypertrophic cardiomyopathy: results from a Chinese cohort.Orphanet J Rare Dis. 2019 Feb 7;14(1):29. doi: 10.1186/s13023-019-1010-z.
85 A variant in MRPS14 (uS14m) causes perinatal hypertrophic cardiomyopathy with neonatal lactic acidosis, growth retardation, dysmorphic features and neurological involvement. Hum Mol Genet. 2019 Feb 15;28(4):639-649. doi: 10.1093/hmg/ddy374.
86 Lifelong left ventricular remodeling of hypertrophic cardiomyopathy caused by a founder frameshift deletion mutation in the cardiac Myosin-binding protein C gene among Japanese.J Am Coll Cardiol. 2005 Nov 1;46(9):1737-43. doi: 10.1016/j.jacc.2005.05.087. Epub 2005 Oct 10.
87 Modulation of cardiac performance by motor protein gene transfer.Ann N Y Acad Sci. 2008 Mar;1123:96-104. doi: 10.1196/annals.1420.011.
88 Human cardiac myosin light chain 4 (MYL4) mosaic expression patterns vary by sex.Sci Rep. 2019 Sep 3;9(1):12681. doi: 10.1038/s41598-019-49191-0.
89 Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: insight into the pathogenesis of phenotypes.J Am Coll Cardiol. 2001 Oct;38(4):1175-80. doi: 10.1016/s0735-1097(01)01509-1.
90 Isolated X-linked hypertrophic cardiomyopathy caused by a novel mutation of the four-and-a-half LIM domain 1 gene.Circ Cardiovasc Genet. 2013 Dec;6(6):543-51. doi: 10.1161/CIRCGENETICS.113.000245. Epub 2013 Oct 10.
91 Functional characterization of the human -cardiac actin mutations Y166C and M305L involved in hypertrophic cardiomyopathy.Cell Mol Life Sci. 2012 Oct;69(20):3457-79. doi: 10.1007/s00018-012-1030-5. Epub 2012 May 29.
92 Disease modeling of a mutation in -actinin 2 guides clinical therapy in hypertrophic cardiomyopathy.EMBO Mol Med. 2019 Dec;11(12):e11115. doi: 10.15252/emmm.201911115. Epub 2019 Nov 3.
93 A Disintegrin and Metalloprotease-22 Attenuates Hypertrophic Remodeling in Mice Through Inhibition of the Protein Kinase B Signaling Pathway.J Am Heart Assoc. 2018 Jan 22;7(2):e005696. doi: 10.1161/JAHA.117.005696.
94 Targeted next-generation sequencing detects novel gene-phenotype associations and expands the mutational spectrum in cardiomyopathies.PLoS One. 2017 Jul 27;12(7):e0181842. doi: 10.1371/journal.pone.0181842. eCollection 2017.
95 Expanding the SHOC2 mutation associated phenotype of Noonan syndrome with loose anagen hair: structural brain anomalies and myelofibrosis.Am J Med Genet A. 2013 Oct;161A(10):2420-30. doi: 10.1002/ajmg.a.36098. Epub 2013 Aug 5.
96 ATPase-deficient mitochondrial inner membrane protein ATAD3A disturbs mitochondrial dynamics in dominant hereditary spastic paraplegia.Hum Mol Genet. 2017 Apr 15;26(8):1432-1443. doi: 10.1093/hmg/ddx042.
97 Targeting ATGL to rescue BSCL2 lipodystrophy and its associated cardiomyopathy.JCI Insight. 2019 Jun 11;5(14):e129781. doi: 10.1172/jci.insight.129781.
98 Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy.J Am Coll Cardiol. 2009 Jul 21;54(4):334-42. doi: 10.1016/j.jacc.2008.12.082.
99 Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25.PLoS One. 2012;7(7):e41574. doi: 10.1371/journal.pone.0041574. Epub 2012 Jul 23.
100 Caveolinopathies: translational implications of caveolin-3 in skeletal and cardiac muscle disorders.Handb Clin Neurol. 2011;101:135-42. doi: 10.1016/B978-0-08-045031-5.00010-4.
101 Congenital generalized lipodystrophy: The evaluation of clinical follow-up findings in a series of five patients with type 1 and two patients with type 4.Eur J Med Genet. 2020 Apr;63(4):103819. doi: 10.1016/j.ejmg.2019.103819. Epub 2019 Nov 25.
102 Dysregulation of the calcium handling protein, CCDC47, is associated with diabetic cardiomyopathy.Cell Biosci. 2018 Aug 17;8:45. doi: 10.1186/s13578-018-0244-0. eCollection 2018.
103 A positive feedback regulation of Heme oxygenase 1 by CELF1 in cardiac myoblast cells.Biochim Biophys Acta Gene Regul Mech. 2019 Feb;1862(2):209-218. doi: 10.1016/j.bbagrm.2018.11.006. Epub 2018 Nov 30.
104 Interpreting secondary cardiac disease variants in an exome cohort.Circ Cardiovasc Genet. 2013 Aug;6(4):337-46. doi: 10.1161/CIRCGENETICS.113.000039. Epub 2013 Jul 16.
105 Human atrial myosin light chain 1 expression attenuates heart failure.Adv Exp Med Biol. 2005;565:283-92; discussion 92, 405-15. doi: 10.1007/0-387-24990-7_21.
106 Health status of cardiac genetic disease patients and their at-risk relatives.Int J Cardiol. 2013 May 25;165(3):448-53. doi: 10.1016/j.ijcard.2011.08.083. Epub 2011 Sep 17.
107 Co-inheritance of mutations associated with arrhythmogenic cardiomyopathy and hypertrophic cardiomyopathy.Eur J Hum Genet. 2017 Oct;25(10):1165-1169. doi: 10.1038/ejhg.2017.109. Epub 2017 Jul 12.
108 Phenotypic expression of a novel desmin gene mutation: hypertrophic cardiomyopathy followed by systemic myopathy.J Hum Genet. 2018 Feb;63(2):249-254. doi: 10.1038/s10038-017-0383-x. Epub 2017 Nov 22.
109 Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure.Physiol Genomics. 2002 Jul 12;10(1):31-44. doi: 10.1152/physiolgenomics.00122.2001.
110 Kindlin-2 suppresses transcription factor GATA4 through interaction with SUV39H1 to attenuate hypertrophy.Cell Death Dis. 2019 Nov 26;10(12):890. doi: 10.1038/s41419-019-2121-0.
111 Mutational analysis of fukutin gene in dilated cardiomyopathy and hypertrophic cardiomyopathy.Circ J. 2009 Jan;73(1):158-61. doi: 10.1253/circj.cj-08-0722. Epub 2008 Nov 17.
112 A novel familial truncating mutation in the filamin C gene associated with cardiac arrhythmias.Eur J Med Genet. 2019 Apr;62(4):282-285. doi: 10.1016/j.ejmg.2018.08.006. Epub 2018 Aug 14.
113 Identification of the difference in the pathogenesis in heart failure arising from different etiologies using a microarray dataset.Clinics (Sao Paulo). 2017 Oct;72(10):600-608. doi: 10.6061/clinics/2017(10)03.
114 GDF11 Attenuated ANG II-Induced Hypertrophic Cardiomyopathy and Expression of ANP, BNP and Beta-MHC Through Down- Regulating CCL11 in Mice.Curr Mol Med. 2018;18(10):661-671. doi: 10.2174/1566524019666190204112753.
115 CHF1/Hey2 promotes physiological hypertrophy in response to pressure overload through selective repression and activation of specific transcriptional pathways.OMICS. 2009 Dec;13(6):501-11. doi: 10.1089/omi.2009.0086.
116 Exome sequencing identifies a novel MYH7 p.G407C mutation responsible for familial hypertrophic cardiomyopathy.DNA Cell Biol. 2014 Oct;33(10):699-704. doi: 10.1089/dna.2014.2483. Epub 2014 Jun 25.
117 Isoleucyl-tRNA synthetase levels modulate the penetrance of a homoplasmic m.4277T>C mitochondrial tRNA(Ile) mutation causing hypertrophic cardiomyopathy.Hum Mol Genet. 2012 Jan 1;21(1):85-100. doi: 10.1093/hmg/ddr440. Epub 2011 Sep 26.
118 A small molecule inhibitor of mutant IDH2 rescues cardiomyopathy in a D-2-hydroxyglutaric aciduria type II mouse model.J Inherit Metab Dis. 2016 Nov;39(6):807-820. doi: 10.1007/s10545-016-9960-y. Epub 2016 Jul 28.
119 Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling.Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1421-1427. doi: 10.1016/j.bbadis.2019.02.014. Epub 2019 Feb 19.
120 Early-Onset Hypertrophic Cardiomyopathy Mutations Significantly Increase the Velocity, Force, and Actin-Activated ATPase Activity of Human -Cardiac Myosin.Cell Rep. 2016 Dec 13;17(11):2857-2864. doi: 10.1016/j.celrep.2016.11.040.
121 DNA sequence capture and next-generation sequencing for the molecular diagnosis of genetic cardiomyopathies.J Mol Diagn. 2014 Jan;16(1):32-44. doi: 10.1016/j.jmoldx.2013.07.008. Epub 2013 Oct 31.
122 Melusin gene (ITGB1BP2) nucleotide variations study in hypertensive and cardiopathic patients.BMC Med Genet. 2009 Dec 17;10:140. doi: 10.1186/1471-2350-10-140.
123 Novel mutations in KARS cause hypertrophic cardiomyopathy and combined mitochondrial respiratory chain defect.Clin Genet. 2017 Jun;91(6):918-923. doi: 10.1111/cge.12931. Epub 2017 Mar 17.
124 MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria.Cell. 2016 Oct 20;167(3):722-738.e23. doi: 10.1016/j.cell.2016.09.052.
125 Effects of cardiomyopathy-linked mutations K15N and R21H in tropomyosin on thin-filament regulation and pointed-end dynamics.Mol Biol Cell. 2019 Jan 15;30(2):268-281. doi: 10.1091/mbc.E18-06-0406. Epub 2018 Nov 21.
126 JIP3 deficiency attenuates cardiac hypertrophy by suppression of JNK pathway.Biochem Biophys Res Commun. 2018 Sep 3;503(1):1-7. doi: 10.1016/j.bbrc.2018.03.208. Epub 2018 Jun 15.
127 Polymorphic trinucleotide repeat in the MEF2A gene at 15q26 is not expanded in familial cardiomyopathies.Mol Cell Probes. 1997 Feb;11(1):55-8. doi: 10.1006/mcpr.1996.0076.
128 New polymorphisms in human MEF2C gene as potential modifier of hypertrophic cardiomyopathy.Mol Biol Rep. 2012 Sep;39(9):8777-85. doi: 10.1007/s11033-012-1740-7. Epub 2012 Jun 21.
129 Meox1 accelerates myocardial hypertrophic decompensation through Gata4.Cardiovasc Res. 2018 Feb 1;114(2):300-311. doi: 10.1093/cvr/cvx222.
130 Activating MRAS mutations cause Noonan syndrome associated with hypertrophic cardiomyopathy.Hum Mol Genet. 2020 Jul 21;29(11):1772-1783. doi: 10.1093/hmg/ddz108.
131 The genotypic and phenotypic spectrum of MTO1 deficiency.Mol Genet Metab. 2018 Jan;123(1):28-42. doi: 10.1016/j.ymgme.2017.11.003. Epub 2017 Nov 15.
132 Myosin binding protein C1: a novel gene for autosomal dominant distal arthrogryposis type 1. Hum Mol Genet. 2010 Apr 1;19(7):1165-73. doi: 10.1093/hmg/ddp587. Epub 2010 Jan 2.
133 MYBPH acts as modifier of cardiac hypertrophy in hypertrophic cardiomyopathy (HCM) patients.Hum Genet. 2016 May;135(5):477-483. doi: 10.1007/s00439-016-1649-7. Epub 2016 Mar 11.
134 Molecular genetic basis of hypertrophic cardiomyopathy: genetic markers for sudden cardiac death.J Cardiovasc Electrophysiol. 1998 Jan;9(1):88-99. doi: 10.1111/j.1540-8167.1998.tb00871.x.
135 Slow-twitch skeletal muscle defects accompany cardiac dysfunction in transgenic mice with a mutation in the myosin regulatory light chain.FASEB J. 2019 Mar;33(3):3152-3166. doi: 10.1096/fj.201801402R. Epub 2018 Oct 26.
136 Myocardin gene regulatory variants as surrogate markers of cardiac hypertrophy - study in a genetically homogeneous population.Clin Genet. 2008 Jan;73(1):71-8. doi: 10.1111/j.1399-0004.2007.00932.x. Epub 2007 Nov 19.
137 NOS1AP Polymorphisms Modify QTc Interval Duration But Not Cardiac Arrest Risk in Hypertrophic Cardiomyopathy.J Cardiovasc Electrophysiol. 2015 Dec;26(12):1346-51. doi: 10.1111/jce.12827. Epub 2015 Oct 13.
138 Decreased interactions of mutant muscle LIM protein (MLP) with N-RAP and alpha-actinin and their implication for hypertrophic cardiomyopathy.Cell Tissue Res. 2004 Aug;317(2):129-36. doi: 10.1007/s00441-004-0873-y. Epub 2004 Jun 16.
139 High-throughput single-strand conformation polymorphism analysis by automated capillary electrophoresis: robust multiplex analysis and pattern-based identification of allelic variants.Hum Mutat. 1999;13(4):318-27. doi: 10.1002/(SICI)1098-1004(1999)13:4<318::AID-HUMU9>3.0.CO;2-F.
140 Primary Myocardial Fibrosis as an Alternative Phenotype Pathway of Inherited Cardiac Structural Disorders.Circulation. 2018 Jun 19;137(25):2716-2726. doi: 10.1161/CIRCULATIONAHA.117.032175.
141 Variable cardiac myosin binding protein-C expression in the myofilaments due to MYBPC3 mutations in hypertrophic cardiomyopathy.J Mol Cell Cardiol. 2018 Oct;123:59-63. doi: 10.1016/j.yjmcc.2018.08.023. Epub 2018 Aug 28.
142 Tumor suppressor Ras-association domain family 1 isoform A is a novel regulator of cardiac hypertrophy.Circulation. 2009 Aug 18;120(7):607-16. doi: 10.1161/CIRCULATIONAHA.109.868554. Epub 2009 Aug 3.
143 Formin homology 2 domain containing 3 variants associated with hypertrophic cardiomyopathy.Circ Cardiovasc Genet. 2013 Feb;6(1):10-8. doi: 10.1161/CIRCGENETICS.112.965277. Epub 2012 Dec 19.
144 Human molecular genetic and functional studies identify TRIM63, encoding Muscle RING Finger Protein 1, as a novel gene for human hypertrophic cardiomyopathy.Circ Res. 2012 Sep 14;111(7):907-19. doi: 10.1161/CIRCRESAHA.112.270207. Epub 2012 Jul 19.
145 New Noonan syndrome model mice with RIT1 mutation exhibit cardiac hypertrophy and susceptibility to -adrenergic stimulation-induced cardiac fibrosis.EBioMedicine. 2019 Apr;42:43-53. doi: 10.1016/j.ebiom.2019.03.014. Epub 2019 Mar 18.
146 Manifest disease, risk factors for sudden cardiac death, and cardiac events in a large nationwide cohort of predictively tested hypertrophic cardiomyopathy mutation carriers: determining the best cardiological screening strategy.Eur Heart J. 2011 May;32(9):1161-70. doi: 10.1093/eurheartj/ehr092. Epub 2011 Apr 1.
147 A delta-sarcoglycan gene polymorphism as a risk factor for hypertrophic cardiomyopathy.Genet Test Mol Biomarkers. 2012 Aug;16(8):855-8. doi: 10.1089/gtmb.2011.0343. Epub 2012 Apr 23.
148 Novel findings of left ventricular non-compaction cardiomyopathy, microform cleft lip and poor vision in patient with SMC1A-associated Cornelia de Lange syndrome.Am J Med Genet A. 2017 Feb;173(2):414-420. doi: 10.1002/ajmg.a.38030. Epub 2016 Nov 7.
149 Spectrum of mutations and genotype-phenotype analysis in Noonan syndrome patients with RIT1 mutations.Hum Genet. 2016 Feb;135(2):209-22. doi: 10.1007/s00439-015-1627-5. Epub 2015 Dec 29.
150 Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients.J Inherit Metab Dis. 2016 Mar;39(2):243-52. doi: 10.1007/s10545-015-9894-9. Epub 2015 Oct 16.
151 De novo missense mutation in a constitutively expressed exon of the slow alpha-tropomyosin gene TPM3 associated with an atypical, sporadic case of nemaline myopathy.Neuromuscul Disord. 2002 Dec;12(10):947-51. doi: 10.1016/s0960-8966(02)00182-7.
152 Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy.Int J Mol Sci. 2014 May 26;15(6):9302-13. doi: 10.3390/ijms15069302.
153 Mutations in COA6 cause cytochrome c oxidase deficiency and neonatal hypertrophic cardiomyopathy.Hum Mutat. 2015 Jan;36(1):34-8. doi: 10.1002/humu.22715. Epub 2014 Nov 18.
154 Echocardiographic-determined septal morphology in Z-disc hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2006 Dec 29;351(4):896-902. doi: 10.1016/j.bbrc.2006.10.119. Epub 2006 Nov 9.
155 MLP-deficient human pluripotent stem cell derived cardiomyocytes develop hypertrophic cardiomyopathy and heart failure phenotypes due to abnormal calcium handling.Cell Death Dis. 2019 Aug 13;10(8):610. doi: 10.1038/s41419-019-1826-4.