General Information of Drug Off-Target (DOT) (ID: OTV83SGI)

DOT Name Inactive tyrosine-protein kinase PRAG1 (PRAG1)
Synonyms PEAK1-related kinase-activating pseudokinase 1; Pragmin; Sugen kinase 223; SgK223
Gene Name PRAG1
Related Disease
Advanced cancer ( )
Matthew-Wood syndrome ( )
UniProt ID
PRAG1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5VE6; 8DGN
Pfam ID
PF07714
Sequence
MHQTLCLNPESLKMSACSDFVEHIWKPGSCKNCFCLRSDHQLVAGPPQPRAGSLPPPPRL
PPRPENCRLEDEGVNSSPYSKPTIAVKPTMMSSEASDVWTEANLSAEVSQVIWRRAPGKL
PLPKQEDAPVVYLGSFRGVQKPAGPSTSPDGNSRCPPAYTMVGLHNLEPRGERNIAFHPV
SFPEEKAVHKEKPSFPYQDRPSTQESFRQKLAAFAGTTSGCHQGPGPLRESLPSEDDSDQ
RCSPSGDSEGGEYCSILDCCPGSPVAKAASQTAGSRGRHGGRDCSPTCWEQGKCSGPAEQ
EKRGPSFPKECCSQGPTAHPSCLGPKKLSLTSEAAISSDGLSCGSGSGSGSGASSPFVPH
LESDYCSLMKEPAPEKQQDPGCPGVTPSRCLGLTGEPQPPAHPREATQPEPIYAESTKRK
KAAPVPSKSQAKIEHAAAAQGQGQVCTGNAWAQKAASGWGRDSPDPTPQVSATITVMAAH
PEEDHRTIYLSSPDSAVGVQWPRGPVSQNSEVGEEETSAGQGLSSRESHAHSASESKPKE
RPAIPPKLSKSSPVGSPVSPSAGGPPVSPLADLSDGSSGGSSIGPQPPSQGPADPAPSCR
TNGVAISDPSRCPQPAASSASEQRRPRFQAGTWSRQCRIEEEEEVEQELLSHSWGRETKN
GPTDHSNSTTWHRLHPTDGSSGQNSKVGTGMSKSASFAFEFPKDRSGIETFSPPPPPPKS
RHLLKMNKSSSDLEKVSQGSAESLSPSFRGVHVSFTTGSTDSLASDSRTCSDGGPSSELA
HSPTNSGKKLFAPVPFPSGSTEDVSPSGPQQPPPLPQKKIVSRAASSPDGFFWTQGSPKP
GTASPKLNLSHSETNVHDESHFSYSLSPGNRHHPVFSSSDPLEKAFKGSGHWLPAAGLAG
NRGGCGSPGLQCKGAPSASSSQLSVSSQASTGSTQLQLHGLLSNISSKEGTYAKLGGLYT
QSLARLVAKCEDLFMGGQKKELHFNENNWSLFKLTCNKPCCDSGDAIYYCATCSEDPGST
YAVKICKAPEPKTVSYCSPSVPVHFNIQQDCGHFVASVPSSMLSSPDAPKDPVPALPTHP
PAQEQDCVVVITREVPHQTASDFVRDSAASHQAEPEAYERRVCFLLLQLCNGLEHLKEHG
IIHRDLCLENLLLVHCTLQAGPGPAPAPAPAPAPAAAAPPCSSAAPPAGGTLSPAAGPAS
PEGPREKQLPRLIISNFLKAKQKPGGTPNLQQKKSQARLAPEIVSASQYRKFDEFQTGIL
IYELLHQPNPFEVRAQLRERDYRQEDLPPLPALSLYSPGLQQLAHLLLEADPIKRIRIGE
AKRVLQCLLWGPRRELVQQPGTSEEALCGTLHNWIDMKRALMMMKFAEKAVDRRRGVELE
DWLCCQYLASAEPGALLQSLKLLQLL
Function
Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth. Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism. Acts as a critical coactivator of Notch signaling.
Reactome Pathway
RND2 GTPase cycle (R-HSA-9696270 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Matthew-Wood syndrome DISA7HR7 Strong Altered Expression [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [3]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [10]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [19]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [19]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [7]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [8]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [9]
Quercetin DM3NC4M Approved Quercetin increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [11]
Triclosan DMZUR4N Approved Triclosan increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [12]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [13]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [14]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [16]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [18]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [20]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [21]
crotylaldehyde DMTWRQI Investigative crotylaldehyde decreases the expression of Inactive tyrosine-protein kinase PRAG1 (PRAG1). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)

References

1 The pseudokinases SgK269 and SgK223: A novel oncogenic alliance in human cancer.Cell Adh Migr. 2018;12(6):524-528. doi: 10.1080/19336918.2017.1394570. Epub 2017 Dec 21.
2 The pseudokinase SgK223 promotes invasion of pancreatic ductal epithelial cells through JAK1/Stat3 signaling.Mol Cancer. 2015 Jul 29;14:139. doi: 10.1186/s12943-015-0412-3.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
5 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
9 Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer. 2014 Apr 23;14:283.
10 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
11 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
12 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
13 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
14 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
15 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
16 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
17 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
20 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
21 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
22 Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde. Toxicol Lett. 2010 Aug 16;197(2):113-22.