General Information of Drug Off-Target (DOT) (ID: OTVLF4G5)

DOT Name Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1)
Synonyms EC 3.4.19.12; Deubiquitinating enzyme MINDY-1; Protein FAM63A
Gene Name MINDY1
Related Disease
Non-insulin dependent diabetes ( )
UniProt ID
MINY1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5JKN; 5JQS; 5MN9; 6TUV; 6TXB; 6Y6R; 6YJG; 6Z90
EC Number
3.4.19.12
Pfam ID
PF04424
Sequence
MEYHQPEDPAPGKAGTAEAVIPENHEVLAGPDEHPQDTDARDADGEAREREPADQALLPS
QCGDNLESPLPEASSAPPGPTLGTLPEVETIRACSMPQELPQSPRTRQPEPDFYCVKWIP
WKGEQTPIITQSTNGPCPLLAIMNILFLQWKVKLPPQKEVITSDELMAHLGNCLLSIKPQ
EKSEGLQLNFQQNVDDAMTVLPKLATGLDVNVRFTGVSDFEYTPECSVFDLLGIPLYHGW
LVDPQSPEAVRAVGKLSYNQLVERIITCKHSSDTNLVTEGLIAEQFLETTAAQLTYHGLC
ELTAAAKEGELSVFFRNNHFSTMTKHKSHLYLLVTDQGFLQEEQVVWESLHNVDGDSCFC
DSDFHLSHSLGKGPGAEGGSGSPETQLQVDQDYLIALSLQQQQPRGPLGLTDLELAQQLQ
QEEYQQQQAAQPVRMRTRVLSLQGRGATSGRPAGERRQRPKHESDCILL
Function
Hydrolase that can specifically remove 'Lys-48'-linked conjugated ubiquitin from proteins. Has exodeubiquitinase activity and has a preference for long polyubiquitin chains. May play a regulatory role at the level of protein turnover.

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [5]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [6]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [7]
Menadione DMSJDTY Approved Menadione affects the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [6]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [8]
GSK2110183 DMZHB37 Phase 2 GSK2110183 increases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [9]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [13]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [14]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [15]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [10]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Ubiquitin carboxyl-terminal hydrolase MINDY-1 (MINDY1). [12]
------------------------------------------------------------------------------------

References

1 Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.Nat Genet. 2018 Apr;50(4):559-571. doi: 10.1038/s41588-018-0084-1. Epub 2018 Apr 9.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
5 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
6 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
7 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
8 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
9 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
10 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
11 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
12 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
13 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
14 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
15 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
16 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.