General Information of Drug Off-Target (DOT) (ID: OTWIX1JU)

DOT Name Transitional endoplasmic reticulum ATPase
Synonyms TER ATPase; EC 3.6.4.6; 15S Mg(2+)-ATPase p97 subunit; Valosin-containing protein; VCP
Gene Name VCP
Related Disease
Inclusion body myopathy with Paget disease of bone and frontotemporal dementia ( )
Charcot-Marie-Tooth disease type 2Y ( )
Frontotemporal dementia and/or amyotrophic lateral sclerosis 6 ( )
Inclusion body myopathy with Paget disease of bone and frontotemporal dementia type 1 ( )
Adult-onset distal myopathy due to VCP mutation ( )
Amyotrophic lateral sclerosis ( )
Frontotemporal dementia with motor neuron disease ( )
Spastic paraplegia-Paget disease of bone syndrome ( )
UniProt ID
TERA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3EBB ; 3HU1 ; 3HU2 ; 3HU3 ; 3QC8 ; 3QQ7 ; 3QQ8 ; 3QWZ ; 3TIW ; 4KDI ; 4KDL ; 4KLN ; 4KO8 ; 4KOD ; 4P0A ; 5B6C ; 5C18 ; 5C19 ; 5C1A ; 5C1B ; 5DYG ; 5DYI ; 5EPP ; 5FTJ ; 5FTK ; 5FTL ; 5FTM ; 5FTN ; 5GLF ; 5IFS ; 5IFW ; 5KIW ; 5KIY ; 5X4L ; 6G2V ; 6G2W ; 6G2X ; 6G2Y ; 6G2Z ; 6G30 ; 6HD0 ; 6MCK ; 7BP8 ; 7BP9 ; 7BPA ; 7BPB ; 7JY5 ; 7K56 ; 7K57 ; 7K59 ; 7L5W ; 7L5X ; 7LMY ; 7LMZ ; 7LN0 ; 7LN1 ; 7LN2 ; 7LN3 ; 7LN4 ; 7LN5 ; 7LN6 ; 7MDM ; 7MDO ; 7MHS ; 7OAT ; 7PUX ; 7R7S ; 7R7T ; 7R7U ; 7RL6 ; 7RL7 ; 7RL9 ; 7RLA ; 7RLB ; 7RLC ; 7RLD ; 7RLF ; 7RLG ; 7RLH ; 7RLI ; 7RLJ ; 7VCS ; 7VCT ; 7VCU ; 7VCV ; 7VCX ; 7Y4W ; 7Y53 ; 7Y59 ; 8B5R ; 8FCL ; 8FCM ; 8FCN ; 8FCO ; 8FCP ; 8FCQ ; 8FCR ; 8FCT ; 8HL7
EC Number
3.6.4.6
Pfam ID
PF00004 ; PF17862 ; PF02933 ; PF02359
Sequence
MASGADSKGDDLSTAILKQKNRPNRLIVDEAINEDNSVVSLSQPKMDELQLFRGDTVLLK
GKKRREAVCIVLSDDTCSDEKIRMNRVVRNNLRVRLGDVISIQPCPDVKYGKRIHVLPID
DTVEGITGNLFEVYLKPYFLEAYRPIRKGDIFLVRGGMRAVEFKVVETDPSPYCIVAPDT
VIHCEGEPIKREDEEESLNEVGYDDIGGCRKQLAQIKEMVELPLRHPALFKAIGVKPPRG
ILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEAEKNAPAI
IFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGLKQRAHVIVMAATNRPNSIDPALRRF
GRFDREVDIGIPDATGRLEILQIHTKNMKLADDVDLEQVANETHGHVGADLAALCSEAAL
QAIRKKMDLIDLEDETIDAEVMNSLAVTMDDFRWALSQSNPSALRETVVEVPQVTWEDIG
GLEDVKRELQELVQYPVEHPDKFLKFGMTPSKGVLFYGPPGCGKTLLAKAIANECQANFI
SIKGPELLTMWFGESEANVREIFDKARQAAPCVLFFDELDSIAKARGGNIGDGGGAADRV
INQILTEMDGMSTKKNVFIIGATNRPDIIDPAILRPGRLDQLIYIPLPDEKSRVAILKAN
LRKSPVAKDVDLEFLAKMTNGFSGADLTEICQRACKLAIRESIESEIRRERERQTNPSAM
EVEEDDPVPEIRRDHFEEAMRFARRSVSDNDIRKYEMFAQTLQQSRGFGSFRFPSGNQGG
AGPSQGSGGGTGGSVYTEDNDDDLYG
Function
Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex. Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation. Involved in clearance process by mediating G3BP1 extraction from stress granules. Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites. Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage. Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis. Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex. Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal. Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation. Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy. Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI. May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation. May more particularly play a role in caveolins sorting in cells. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway.
KEGG Pathway
Mitophagy - animal (hsa04137 )
Protein processing in endoplasmic reticulum (hsa04141 )
Amyotrophic lateral sclerosis (hsa05014 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Legionellosis (hsa05134 )
Reactome Pathway
HSF1 activation (R-HSA-3371511 )
ABC-family proteins mediated transport (R-HSA-382556 )
N-glycan trimming in the ER and Calnexin/Calreticulin cycle (R-HSA-532668 )
Hedgehog ligand biogenesis (R-HSA-5358346 )
Hh mutants are degraded by ERAD (R-HSA-5362768 )
Defective CFTR causes cystic fibrosis (R-HSA-5678895 )
Josephin domain DUBs (R-HSA-5689877 )
Ovarian tumor domain proteases (R-HSA-5689896 )
Neutrophil degranulation (R-HSA-6798695 )
E3 ubiquitin ligases ubiquitinate target proteins (R-HSA-8866654 )
Protein methylation (R-HSA-8876725 )
Neddylation (R-HSA-8951664 )
RHOH GTPase cycle (R-HSA-9013407 )
Aggrephagy (R-HSA-9646399 )
Attachment and Entry (R-HSA-9678110 )
Attachment and Entry (R-HSA-9694614 )
KEAP1-NFE2L2 pathway (R-HSA-9755511 )
Translesion Synthesis by POLH (R-HSA-110320 )

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Inclusion body myopathy with Paget disease of bone and frontotemporal dementia DISK4S94 Definitive Autosomal dominant [1]
Charcot-Marie-Tooth disease type 2Y DISBXPPB Strong Autosomal dominant [2]
Frontotemporal dementia and/or amyotrophic lateral sclerosis 6 DISNWZJK Strong Autosomal dominant [3]
Inclusion body myopathy with Paget disease of bone and frontotemporal dementia type 1 DISHQXXA Strong Autosomal dominant [4]
Adult-onset distal myopathy due to VCP mutation DIS4PJCD Supportive Autosomal dominant [5]
Amyotrophic lateral sclerosis DISF7HVM Supportive Autosomal dominant [6]
Frontotemporal dementia with motor neuron disease DISPZM6A Supportive Autosomal dominant [7]
Spastic paraplegia-Paget disease of bone syndrome DISUEXRV Supportive Autosomal dominant [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
PEITC DMOMN31 Phase 2 Transitional endoplasmic reticulum ATPase affects the binding of PEITC. [34]
Sulforaphane DMQY3L0 Investigative Transitional endoplasmic reticulum ATPase affects the binding of Sulforaphane. [34]
NMS-873 DMYKZ6U Investigative Transitional endoplasmic reticulum ATPase decreases the response to substance of NMS-873. [35]
------------------------------------------------------------------------------------
6 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Transitional endoplasmic reticulum ATPase. [9]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the methylation of Transitional endoplasmic reticulum ATPase. [10]
Arsenic DMTL2Y1 Approved Arsenic increases the ubiquitination of Transitional endoplasmic reticulum ATPase. [14]
Quercetin DM3NC4M Approved Quercetin decreases the phosphorylation of Transitional endoplasmic reticulum ATPase. [15]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Transitional endoplasmic reticulum ATPase. [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Transitional endoplasmic reticulum ATPase. [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Transitional endoplasmic reticulum ATPase. [11]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Transitional endoplasmic reticulum ATPase. [12]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Transitional endoplasmic reticulum ATPase. [13]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Transitional endoplasmic reticulum ATPase. [16]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Transitional endoplasmic reticulum ATPase. [17]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Transitional endoplasmic reticulum ATPase. [18]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Transitional endoplasmic reticulum ATPase. [19]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Transitional endoplasmic reticulum ATPase. [20]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Transitional endoplasmic reticulum ATPase. [22]
CB-5083 DM12GN7 Phase 1 CB-5083 decreases the activity of Transitional endoplasmic reticulum ATPase. [24]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Transitional endoplasmic reticulum ATPase. [25]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the expression of Transitional endoplasmic reticulum ATPase. [26]
MG-132 DMKA2YS Preclinical MG-132 increases the expression of Transitional endoplasmic reticulum ATPase. [27]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Transitional endoplasmic reticulum ATPase. [29]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Transitional endoplasmic reticulum ATPase. [30]
Okadaic acid DM47CO1 Investigative Okadaic acid decreases the expression of Transitional endoplasmic reticulum ATPase. [31]
Taurine DMVW7N3 Investigative Taurine decreases the expression of Transitional endoplasmic reticulum ATPase. [32]
L-Serine DM6WPIS Investigative L-Serine decreases the expression of Transitional endoplasmic reticulum ATPase. [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Transitional endoplasmic reticulum ATPase. [21]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 A novel mutation in VCP causes Charcot-Marie-Tooth Type 2 disease. Brain. 2014 Nov;137(Pt 11):2897-902. doi: 10.1093/brain/awu224. Epub 2014 Aug 14.
3 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
4 Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004 Apr;36(4):377-81. doi: 10.1038/ng1332. Epub 2004 Mar 21.
5 Distinct distal myopathy phenotype caused by VCP gene mutation in a Finnish family. Neuromuscul Disord. 2011 Aug;21(8):551-5. doi: 10.1016/j.nmd.2011.05.008.
6 Amyotrophic lateral sclerosis: an update on recent genetic insights. J Neurol. 2013 Nov;260(11):2917-27. doi: 10.1007/s00415-013-7112-y. Epub 2013 Oct 2.
7 Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010 Dec 9;68(5):857-64. doi: 10.1016/j.neuron.2010.11.036.
8 Hereditary spastic paraplegia caused by a mutation in the VCP gene. Brain. 2012 Dec;135(Pt 12):e223; author reply e224. doi: 10.1093/brain/aws201. Epub 2012 Sep 18.
9 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
10 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
11 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
12 Molecular mechanism of action of bisphenol and bisphenol A mediated by oestrogen receptor alpha in growth and apoptosis of breast cancer cells. Br J Pharmacol. 2013 May;169(1):167-78.
13 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
14 Quantitative Assessment of Arsenite-Induced Perturbation of Ubiquitinated Proteome. Chem Res Toxicol. 2022 Sep 19;35(9):1589-1597. doi: 10.1021/acs.chemrestox.2c00197. Epub 2022 Aug 22.
15 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
16 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
17 Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells. Autophagy. 2010 Aug;6(6):711-24. doi: 10.4161/auto.6.6.12397. Epub 2010 Aug 17.
18 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
19 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
20 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
21 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
22 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
23 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
24 Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation. J Biol Chem. 2019 Feb 15;294(7):2436-2448. doi: 10.1074/jbc.RA118.005069. Epub 2018 Dec 13.
25 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
26 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
27 A novel UBA and UBX domain protein that binds polyubiquitin and VCP and is a substrate for SAPKs. Biochem J. 2004 Dec 1;384(Pt 2):391-400. doi: 10.1042/BJ20041498.
28 Bisphenol-A impairs cellular function and alters DNA methylation of stress pathway genes in first trimester trophoblast cells. Reprod Toxicol. 2018 Dec;82:72-79.
29 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
30 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.
31 Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol In Vitro. 2018 Feb;46:102-112.
32 Taurine-responsive genes related to signal transduction as identified by cDNA microarray analyses of HepG2 cells. J Med Food. 2006 Spring;9(1):33-41. doi: 10.1089/jmf.2006.9.33.
33 Mechanisms of L-Serine Neuroprotection in vitro Include ER Proteostasis Regulation. Neurotox Res. 2018 Jan;33(1):123-132. doi: 10.1007/s12640-017-9829-3. Epub 2017 Nov 2.
34 Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol. 2011 Oct 17;24(10):1735-43. doi: 10.1021/tx2002806. Epub 2011 Aug 26.
35 p97 Composition Changes Caused by Allosteric Inhibition Are Suppressed by an On-Target Mechanism that Increases the Enzyme's ATPase Activity. Cell Chem Biol. 2016 Apr 21;23(4):517-28. doi: 10.1016/j.chembiol.2016.03.012.