General Information of Drug Off-Target (DOT) (ID: OTX9UREP)

DOT Name NIPA-like protein 2 (NIPAL2)
Gene Name NIPAL2
UniProt ID
NPAL2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF05653
Sequence
MAAVAPAGPGDSASAALDELSLNFTYGAPGAGNGSLSGDWYRRNQIHLFGVLLAILGNLV
ISISLNIQKYSHLQLAQQEHPRPYFKSVLWWGGVLLMAVGETGNFAAYGFAPITLIAPLG
CVSVTGSAIISVTFLKDNLRASDLLGTTLAFAGTYLLVNFAPNITQAISARTVQYYLVGW
QFLIYVILEILIFCILLYFYKRKGMKHMVILLTLVAILASLTVISVKAVSGMITFSVMDK
MQLTYPIFYIMFIIMIASCVFQVKFLNQATKLYNTTTVVPVNHIFFTISAIIAGIIFYQE
FLGAPFLTVFIYLFGCFLSFLGVFLVTRNREKEHLQQSYIDFGNIPGKQMLDKIQPDSHS
LSYGTLPDGSDSTKSQSGEKKEV
Reactome Pathway
Miscellaneous transport and binding events (R-HSA-5223345 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Chlorothiazide DMLHESP Approved NIPA-like protein 2 (NIPAL2) increases the Metabolic disorder ADR of Chlorothiazide. [14]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of NIPA-like protein 2 (NIPAL2). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of NIPA-like protein 2 (NIPAL2). [9]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of NIPA-like protein 2 (NIPAL2). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of NIPA-like protein 2 (NIPAL2). [3]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of NIPA-like protein 2 (NIPAL2). [4]
Estradiol DMUNTE3 Approved Estradiol affects the expression of NIPA-like protein 2 (NIPAL2). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of NIPA-like protein 2 (NIPAL2). [6]
Panobinostat DM58WKG Approved Panobinostat increases the expression of NIPA-like protein 2 (NIPAL2). [7]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of NIPA-like protein 2 (NIPAL2). [8]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of NIPA-like protein 2 (NIPAL2). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of NIPA-like protein 2 (NIPAL2). [11]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of NIPA-like protein 2 (NIPAL2). [12]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of NIPA-like protein 2 (NIPAL2). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
6 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
7 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood. 2012 Oct 4;120(14):2843-52.
11 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
12 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
14 Genome-wide association analyses suggest NELL1 influences adverse metabolic response to HCTZ in African Americans. Pharmacogenomics J. 2014 Feb;14(1):35-40. doi: 10.1038/tpj.2013.3. Epub 2013 Feb 12.