General Information of Drug Off-Target (DOT) (ID: OTXAGR7J)

DOT Name 4-aminobutyrate aminotransferase, mitochondrial (ABAT)
Synonyms EC 2.6.1.19; (S)-3-amino-2-methylpropionate transaminase; EC 2.6.1.22; GABA aminotransferase; GABA-AT; Gamma-amino-N-butyrate transaminase; GABA transaminase; GABA-T; L-AIBAT
Gene Name ABAT
Related Disease
GABA aminotransaminase deficiency ( )
Infantile spasm ( )
UniProt ID
GABT_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.6.1.19; 2.6.1.22
Pfam ID
PF00202
Sequence
MASMLLAQRLACSFQHSYRLLVPGSRHISQAAAKVDVEFDYDGPLMKTEVPGPRSQELMK
QLNIIQNAEAVHFFCNYEESRGNYLVDVDGNRMLDLYSQISSVPIGYSHPALLKLIQQPQ
NASMFVNRPALGILPPENFVEKLRQSLLSVAPKGMSQLITMACGSCSNENALKTIFMWYR
SKERGQRGFSQEELETCMINQAPGCPDYSILSFMGAFHGRTMGCLATTHSKAIHKIDIPS
FDWPIAPFPRLKYPLEEFVKENQQEEARCLEEVEDLIVKYRKKKKTVAGIIVEPIQSEGG
DNHASDDFFRKLRDIARKHGCAFLVDEVQTGGGCTGKFWAHEHWGLDDPADVMTFSKKMM
TGGFFHKEEFRPNAPYRIFNTWLGDPSKNLLLAEVINIIKREDLLNNAAHAGKALLTGLL
DLQARYPQFISRVRGRGTFCSFDTPDDSIRNKLILIARNKGVVLGGCGDKSIRFRPTLVF
RDHHAHLFLNIFSDILADFK
Function
Catalyzes the conversion of gamma-aminobutyrate and L-beta-aminoisobutyrate to succinate semialdehyde and methylmalonate semialdehyde, respectively. Can also convert delta-aminovalerate and beta-alanine.
Tissue Specificity Liver > pancreas > brain > kidney > heart > placenta.
KEGG Pathway
Alanine, aspartate and glutamate metabolism (hsa00250 )
Valine, leucine and isoleucine degradation (hsa00280 )
beta-Alanine metabolism (hsa00410 )
Propanoate metabolism (hsa00640 )
Butanoate metabolism (hsa00650 )
Metabolic pathways (hsa01100 )
GABAergic sy.pse (hsa04727 )
Reactome Pathway
Degradation of GABA (R-HSA-916853 )
BioCyc Pathway
MetaCyc:HS02477-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
GABA aminotransaminase deficiency DISB4GJ1 Strong Autosomal recessive [1]
Infantile spasm DISZSKDG Moderate Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [3]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [20]
Glyphosate DM0AFY7 Investigative Glyphosate affects the methylation of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [28]
------------------------------------------------------------------------------------
25 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [6]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [8]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [9]
Estradiol DMUNTE3 Approved Estradiol increases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [10]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [11]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [12]
Triclosan DMZUR4N Approved Triclosan decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [13]
Panobinostat DM58WKG Approved Panobinostat increases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [14]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [15]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [16]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [17]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [14]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [18]
Afimoxifene DMFORDT Phase 2 Afimoxifene decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [19]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [21]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [22]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [24]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [25]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [26]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [27]
Lithium chloride DMHYLQ2 Investigative Lithium chloride decreases the expression of 4-aminobutyrate aminotransferase, mitochondrial (ABAT). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Drug(s)

References

1 4-Aminobutyrate aminotransferase (GABA-transaminase) deficiency. J Inherit Metab Dis. 1999 Jun;22(4):414-27. doi: 10.1023/a:1005500122231.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
6 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
10 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
11 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
12 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
13 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
14 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
15 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
16 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
17 The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol. Toxicol Sci. 2009 Jan;107(1):40-55.
18 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
19 Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res. 2006 Jul 15;66(14):7334-40.
20 Gene expression and cytosine DNA methylation alterations in induced pluripotent stem-cell-derived human hepatocytes treated with low doses of chemical carcinogens. Arch Toxicol. 2019 Nov;93(11):3335-3344. doi: 10.1007/s00204-019-02569-5. Epub 2019 Sep 25.
21 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
22 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
23 Assessment of caffeine neurotoxicity using novel biomarkers of neural function in SH-SY5Y cells - Is there a need for environmental concern?. Chem Biol Interact. 2022 Sep 25;365:110082. doi: 10.1016/j.cbi.2022.110082. Epub 2022 Aug 5.
24 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
25 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
26 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
27 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
28 Association of Glyphosate Exposure with Blood DNA Methylation in a Cross-Sectional Study of Postmenopausal Women. Environ Health Perspect. 2022 Apr;130(4):47001. doi: 10.1289/EHP10174. Epub 2022 Apr 4.
29 Early gene response in lithium chloride induced apoptosis. Apoptosis. 2005 Jan;10(1):75-90. doi: 10.1007/s10495-005-6063-x.