General Information of Drug Off-Target (DOT) (ID: OTXEFI4O)

DOT Name Dynein regulatory complex protein 8 (EFCAB2)
Synonyms EF-hand calcium-binding domain-containing protein 2
Gene Name EFCAB2
Related Disease
Colon cancer ( )
Colorectal adenocarcinoma ( )
Colorectal cancer ( )
Colorectal cancer, susceptibility to, 1 ( )
Colorectal cancer, susceptibility to, 10 ( )
Colorectal cancer, susceptibility to, 12 ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Temporal lobe epilepsy ( )
UniProt ID
DRC8_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8J07
Sequence
MLGPGQVRLRPRVWRDKAGGRVADGASGLPPARGSWRETGTGRALGASSPPRPAQGSSSP
GIQSGPSSRPGSPRGAEQAGTPRPRLSLGISQATGSAARWRTRRTGKGLGYNSDEIRPRT
LLIEHLMEGGRRDHHTMTVLWGTQEIIVAEFHKKIKEAFEVFDHESNNTVDVREIGTIIR
SLGCCPTEGELHDLIAEVEEEEPTGYIRFEKFLPVMTEILLERKYRPIPEDVLLRAFEVL
DSAKRGFLTKDELIKYMTEEDGVSLRRPG
Function
Component of the nexin-dynein regulatory complex (N-DRC), a key regulator of ciliary/flagellar motility which maintains the alignment and integrity of the distal axoneme and regulates microtubule sliding in motile axonemes.

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Colon cancer DISVC52G Strong Genetic Variation [1]
Colorectal adenocarcinoma DISPQOUB Strong Genetic Variation [1]
Colorectal cancer DISNH7P9 Strong Genetic Variation [1]
Colorectal cancer, susceptibility to, 1 DISZ794C Strong Genetic Variation [1]
Colorectal cancer, susceptibility to, 10 DISQXMYM Strong Genetic Variation [1]
Colorectal cancer, susceptibility to, 12 DIS4FXJX Strong Genetic Variation [1]
Colorectal carcinoma DIS5PYL0 Strong Genetic Variation [1]
Colorectal neoplasm DISR1UCN Strong Genetic Variation [1]
Temporal lobe epilepsy DISNOPXX Limited Biomarker [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Dynein regulatory complex protein 8 (EFCAB2). [3]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Dynein regulatory complex protein 8 (EFCAB2). [4]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Dynein regulatory complex protein 8 (EFCAB2). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Dynein regulatory complex protein 8 (EFCAB2). [6]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Dynein regulatory complex protein 8 (EFCAB2). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Dynein regulatory complex protein 8 (EFCAB2). [4]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Dynein regulatory complex protein 8 (EFCAB2). [9]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Dynein regulatory complex protein 8 (EFCAB2). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Dynein regulatory complex protein 8 (EFCAB2). [7]
------------------------------------------------------------------------------------

References

1 Large-Scale Genome-Wide Association Study of East Asians Identifies Loci Associated With Risk for Colorectal Cancer.Gastroenterology. 2019 Apr;156(5):1455-1466. doi: 10.1053/j.gastro.2018.11.066. Epub 2018 Dec 6.
2 High-Throughput Data of Circular RNA Profiles in Human Temporal Cortex Tissue Reveals Novel Insights into Temporal Lobe Epilepsy.Cell Physiol Biochem. 2018;45(2):677-691. doi: 10.1159/000487161. Epub 2018 Jan 31.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
10 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.