General Information of Disease (ID: DISNOPXX)

Disease Name Temporal lobe epilepsy
Synonyms epilepsy, familial temporal lobe; temporal lobe epilepsy; epilepsy of temporal lobe; epilepsy, temporal lobe
Definition
A localization-related (focal) form of epilepsy characterized by recurrent seizures that arise from foci within the temporal lobe, most commonly from its mesial aspect. A wide variety of psychic phenomena may be associated, including illusions, hallucinations, dyscognitive states, and affective experiences. The majority of complex partial seizures (see epilepsy, complex partial) originate from the temporal lobes. Temporal lobe seizures may be classified by etiology as cryptogenic, familial, or symptomatic (i.e., related to an identified disease process or lesion). (From Adams et al., Principles of Neurology, 6th ed, p321)
Disease Hierarchy
DISHLPYW: Familial partial epilepsy
DISBB28L: Epilepsy
DISNOPXX: Temporal lobe epilepsy
Disease Identifiers
MONDO ID
MONDO_0005115
MESH ID
D004833
UMLS CUI
C0014556
MedGen ID
4990
SNOMED CT ID
193000002

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 93 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ATP1A2 TT5B6HJ Limited Genetic Variation [1]
DFFB TT2SRE0 Limited Altered Expression [2]
DNM1 TTE3JW9 Limited Altered Expression [3]
DPYSL2 TTZCW3T Limited Biomarker [4]
EPHA4 TTG84D3 Limited Biomarker [5]
GABRA1 TT1MPAY Limited Altered Expression [6]
GABRA2 TTBMV1G Limited Biomarker [7]
GABRA5 TTNZPQ1 Limited Altered Expression [8]
GABRB2 TTZA1NY Limited Altered Expression [9]
GRIA3 TT82EZV Limited Altered Expression [10]
GRIK2 TT0K5RG Limited Biomarker [11]
HCN2 TT9EUT4 Limited Altered Expression [12]
HRC TTR4FKD Limited Biomarker [13]
HSP90AB1 TTH5YN2 Limited Altered Expression [14]
KCNJ9 TT4VHL6 Limited Biomarker [15]
KCNMB4 TT1AQ50 Limited Genetic Variation [16]
KCNQ3 TTIVDM3 Limited Genetic Variation [17]
KLKB1 TTN0PCX Limited Altered Expression [18]
MAPK10 TT056SO Limited Biomarker [19]
NPY1R TTRK9JT Limited Altered Expression [20]
P2RX7 TT473XN Limited Biomarker [21]
PLD1 TT3T17P Limited Biomarker [22]
PLD2 TTRLMKF Limited Biomarker [22]
PSEN2 TTWN3F4 Limited Altered Expression [20]
RTN4 TT7GXMU Limited Altered Expression [23]
SLC46A1 TTY8Z2E Limited Biomarker [24]
GRIA2 TTWM461 moderate Biomarker [25]
GRIN1 TTLD29N moderate Biomarker [26]
GRM2 TTXJ47W moderate Biomarker [27]
KDR TTUTJGQ moderate Biomarker [28]
NPY2R TTJ6WK9 moderate Therapeutic [29]
SLC1A1 TTG2A6F moderate Biomarker [30]
SLIT2 TTDWK85 moderate Biomarker [31]
TRPV1 TTMI6F5 moderate Altered Expression [32]
ABCB1 TT3OT40 Strong Genetic Variation [33]
ADK TTL732K Strong Altered Expression [34]
AGT TT5C0UB Strong Biomarker [35]
AIF1 TT12MEP Strong Biomarker [36]
AVP TTJ8EWH Strong Biomarker [37]
BDKRB1 TTG5QIA Strong Biomarker [38]
BDKRB2 TTGY8IW Strong Therapeutic [38]
CACNA1A TTX4QDJ Strong Biomarker [39]
CNR1 TT6OEDT Strong Therapeutic [40]
CRH TTA7YIZ Strong Biomarker [41]
CRHBP TT3PKZE Strong Biomarker [41]
CXCR4 TTBID49 Strong Biomarker [42]
DLG4 TT9PB26 Strong Biomarker [43]
FYN TT2B9KF Strong Biomarker [43]
GLUL TTURQ2G Strong Biomarker [44]
GRIA1 TTVPQTF Strong Biomarker [25]
GRIK1 TT0MYE2 Strong Biomarker [45]
GRIK5 TTO6LI7 Strong Biomarker [43]
GRIN2B TTN9D8E Strong Altered Expression [46]
GRM1 TTVBPDM Strong Biomarker [47]
GRM3 TT8A9EF Strong Biomarker [27]
GRM4 TTICZ1O Strong Biomarker [47]
GRM5 TTHS256 Strong Altered Expression [48]
HCN1 TTNB6UQ Strong Biomarker [49]
HTR1A TTSQIFT Strong Biomarker [50]
HTR2A TTJQOD7 Strong Genetic Variation [51]
KCNC4 TTODZF1 Strong Biomarker [52]
KCNJ10 TTG140O Strong Altered Expression [53]
KLK8 TTH5MRS Strong Biomarker [54]
MBP TT2RY5P Strong Biomarker [55]
MGAT1 TTYJRN5 Strong Altered Expression [56]
MTOR TTCJG29 Strong Biomarker [57]
NOS1 TTZUFI5 Strong Posttranslational Modification [58]
NTRK2 TTKN7QR Strong Biomarker [59]
OPRL1 TTNT7K8 Strong Altered Expression [60]
P2RX4 TT1NLOA Strong Biomarker [61]
PDE10A TTJW4LU Strong Altered Expression [62]
PRKG2 TTDWFCQ Strong Biomarker [63]
PTPRZ1 TT4SEA8 Strong Biomarker [64]
RGMA TTURJV4 Strong Biomarker [65]
SCN1A TTANOZH Strong Genetic Variation [66]
SCN2A TTLJTUF Strong Altered Expression [67]
SCN8A TT54ERL Strong Altered Expression [68]
SHH TTIENCJ Strong Biomarker [69]
SLC12A5 TTH6UZY Strong Altered Expression [70]
SLC1A2 TT2F078 Strong Biomarker [71]
SLC6A1 TTPRKM0 Strong Biomarker [72]
SLC6A4 TT3ROYC Strong Biomarker [50]
SLC6A9 TTHJTF7 Strong Altered Expression [56]
SRR TTZFUY6 Strong Biomarker [73]
TEK TT9VGXW Strong Biomarker [74]
TNFRSF13C TT7NJSE Strong Altered Expression [75]
TSPO TTPTXIN Strong Biomarker [76]
VDAC2 TTM1I7L Strong Biomarker [77]
WNK3 TTI7FDX Strong Altered Expression [78]
ADAM10 TTVXEGU Definitive Biomarker [79]
NPY TT64REZ Definitive Biomarker [80]
TPH2 TT3KLDP Definitive Genetic Variation [81]
VDR TTK59TV Definitive Genetic Variation [82]
------------------------------------------------------------------------------------
⏷ Show the Full List of 93 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC12A2 DTHKL3Q moderate Biomarker [83]
KCNH7 DT3WXPI Strong Altered Expression [84]
------------------------------------------------------------------------------------
This Disease Is Related to 1 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
AK2 DEY1FJO Strong Biomarker [85]
------------------------------------------------------------------------------------
This Disease Is Related to 73 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
APOBEC1 OTY8QX2R Limited Genetic Variation [86]
CASP8AP2 OTTWT68S Limited Genetic Variation [87]
CDYL OTCUK5KZ Limited Biomarker [88]
DBP OTE0W7LN Limited Biomarker [89]
DEPDC5 OTE70JLY Limited Genetic Variation [90]
DNAH8 OTGES2OU Limited Biomarker [1]
DOC2A OT5G9V94 Limited Biomarker [91]
DROSHA OTCE68KZ Limited Biomarker [92]
DUSP26 OTI7WIYN Limited Biomarker [93]
EFCAB2 OTXEFI4O Limited Biomarker [92]
EIF2S1 OTM0GDTP Limited Posttranslational Modification [58]
FAM3C OTBR6U9G Limited Biomarker [89]
GABBR2 OT67RIFY Limited Biomarker [94]
GLRA3 OTC8C2NC Limited Biomarker [95]
GLS2 OT08MSHL Limited Biomarker [44]
GNA14 OTYZ1ZI0 Limited Biomarker [96]
HAP1 OT6SG0JQ Limited Genetic Variation [97]
KCND2 OTIFUVV7 Limited Biomarker [98]
KCNE1 OTZNQUW9 Limited Altered Expression [20]
LETM1 OT8N4MRU Limited Biomarker [99]
NWD1 OT4JMFPH Limited Altered Expression [100]
OPN5 OTCYGHDA Limited Biomarker [54]
PANX1 OTXPEDOK Limited Genetic Variation [101]
PEX5L OTLR4HSR Limited Biomarker [102]
RRBP1 OT4ZTPTM Limited Genetic Variation [103]
SOX7 OTOZOFAG Limited Biomarker [104]
SPAG8 OTZC5XP9 Limited Altered Expression [105]
SUCO OT3I9VO9 Limited Autosomal dominant [106]
TLN2 OT10QQBC Limited Biomarker [89]
CPA6 OT43RD23 moderate Genetic Variation [107]
LGI1 OTPS77HO moderate Biomarker [108]
ACTB OT1MCP2F Strong Biomarker [43]
ADD1 OTTF68DC Strong Biomarker [43]
AQP4 OTA9MYD5 Strong Biomarker [109]
ATL1 OTR2788Y Strong Altered Expression [110]
BIN1 OTK8O0X8 Strong Biomarker [111]
CABP1 OTLSSRGG Strong Biomarker [112]
CALB1 OTM7IXDG Strong Biomarker [113]
CALHM1 OTUZPEYQ Strong Genetic Variation [114]
CDC42 OT5QBC5M Strong Biomarker [115]
CNTNAP2 OT48T2ZP Strong Biomarker [116]
COX3 OTNNGBYJ Strong Biomarker [117]
CYFIP1 OTOBEH24 Strong Biomarker [118]
DBN1 OTZVKG8A Strong Biomarker [119]
DHX40 OTOL02QN Strong Biomarker [120]
DSCAM OTL7PRMK Strong Altered Expression [121]
DTNBP1 OT9UQT2S Strong Biomarker [122]
ENO2 OTRODL0T Strong Biomarker [123]
GAB2 OTBFN705 Strong Altered Expression [124]
GABRB3 OT80C3D4 Strong Genetic Variation [125]
GLUD1 OTXKOCUH Strong Biomarker [126]
JRK OTO8E77P Strong Biomarker [127]
MAP2 OT6UYT3X Strong Biomarker [128]
MAPK8IP3 OT0X8ACY Strong Altered Expression [129]
MICAL1 OTJEDVWA Strong Biomarker [130]
NSF OTKRJ2ZT Strong Altered Expression [131]
PDYN OTEJ6430 Strong Biomarker [132]
PRICKLE1 OT9HHEM9 Strong Therapeutic [49]
PVALB OTZW1WVQ Strong Biomarker [133]
RBFOX1 OTFPKEL7 Strong Genetic Variation [134]
RELN OTLKMW1O Strong Altered Expression [135]
SC5D OT41KMW4 Strong Altered Expression [84]
SCN7A OTK05PXY Strong Altered Expression [136]
SCNN1D OTTX2G9M Strong Altered Expression [137]
SELENOW OTVSKPAN Strong Biomarker [138]
SEMA7A OT0ZJK64 Strong Altered Expression [139]
SH3GL2 OTOE443G Strong Altered Expression [140]
SMG6 OTRCEJQL Strong Genetic Variation [73]
SNX25 OT8JY8M1 Strong Altered Expression [141]
SPAST OTIF3AJI Strong Altered Expression [142]
BTN1A1 OTSQWC36 Definitive Biomarker [143]
DCX OTISR7K3 Definitive Biomarker [144]
SCN1B OTGD78J3 Definitive Genetic Variation [145]
------------------------------------------------------------------------------------
⏷ Show the Full List of 73 DOT(s)

References

1 Lack of association between temporal lobe epilepsy and a novel polymorphism in the alpha 2 subunit gene (ATP1A2) of the sodium potassium transporting ATPase.Am J Med Genet. 2000 Feb 7;96(1):79-83.
2 Caspase-3 cleavage and nuclear localization of caspase-activated DNase in human temporal lobe epilepsy.J Cereb Blood Flow Metab. 2006 Apr;26(4):583-9. doi: 10.1038/sj.jcbfm.9600219.
3 Upregulated dynamin 1 in an acute seizure model and in epileptic patients.Synapse. 2015 Feb;69(2):67-77. doi: 10.1002/syn.21788. Epub 2014 Nov 11.
4 Reduction of hippocampal collapsin response mediated protein-2 in patients with mesial temporal lobe epilepsy.Neurochem Res. 2004 Dec;29(12):2189-96. doi: 10.1007/s11064-004-7025-3.
5 EphA4 may contribute to microvessel remodeling in the hippocampal CA1 and CA3 areas in a mouse model of temporal lobe epilepsy.Mol Med Rep. 2017 Jan;15(1):37-46. doi: 10.3892/mmr.2016.6017. Epub 2016 Dec 9.
6 Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy.J Neurosci. 2006 Nov 1;26(44):11342-6. doi: 10.1523/JNEUROSCI.3329-06.2006.
7 Irregular RNA splicing curtails postsynaptic gephyrin in the cornu ammonis of patients with epilepsy.Brain. 2010 Dec;133(Pt 12):3778-94. doi: 10.1093/brain/awq298. Epub 2010 Nov 10.
8 Evaluating reference genes to normalize gene expression in human epileptogenic brain tissues.Biochem Biophys Res Commun. 2010 Dec 17;403(3-4):385-90. doi: 10.1016/j.bbrc.2010.10.138. Epub 2010 Nov 20.
9 Increased expression of GABA(A) receptor beta-subunits in the hippocampus of patients with temporal lobe epilepsy.J Neuropathol Exp Neurol. 2003 Aug;62(8):820-34. doi: 10.1093/jnen/62.8.820.
10 AMPA receptor alterations precede mossy fiber sprouting in young children with temporal lobe epilepsy.Neuroscience. 2004;126(1):105-14. doi: 10.1016/j.neuroscience.2004.03.004.
11 RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients.Neurobiol Dis. 2001 Jun;8(3):459-68. doi: 10.1006/nbdi.2001.0394.
12 Enhanced expression of a specific hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) in surviving dentate gyrus granule cells of human and experimental epileptic hippocampus.J Neurosci. 2003 Jul 30;23(17):6826-36. doi: 10.1523/JNEUROSCI.23-17-06826.2003.
13 Individual hippocampal subfield assessment indicates that matrix macromolecules and gliosis are key elements for the increased T2 relaxation time seen in temporal lobe epilepsy.Epilepsia. 2017 Jan;58(1):149-159. doi: 10.1111/epi.13620. Epub 2016 Nov 18.
14 Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy.J Exp Med. 2017 Feb;214(2):547-563. doi: 10.1084/jem.20160667. Epub 2016 Dec 27.
15 Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy.Epilepsy Res. 2010 Jan;88(1):55-64. doi: 10.1016/j.eplepsyres.2009.09.023. Epub 2009 Oct 28.
16 Failure to confirm association of a polymorphism in KCNMB4 gene with mesial temporal lobe epilepsy.Epilepsy Res. 2013 Sep;106(1-2):284-7. doi: 10.1016/j.eplepsyres.2013.03.014. Epub 2013 Apr 25.
17 Electroconvulsive seizure thresholds and kindling acquisition rates are altered in mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions.Epilepsia. 2009 Jul;50(7):1752-9. doi: 10.1111/j.1528-1167.2009.02100.x. Epub 2009 Apr 27.
18 Plasma kallikrein-kinin system contributes to peripheral inflammation in temporal lobe epilepsy.J Neurochem. 2019 Aug;150(3):296-311. doi: 10.1111/jnc.14793. Epub 2019 Jul 10.
19 Neuroprotective Effects of the Absence of JNK1 or JNK3 Isoforms on Kainic Acid-Induced Temporal Lobe Epilepsy-Like Symptoms.Mol Neurobiol. 2018 May;55(5):4437-4452. doi: 10.1007/s12035-017-0669-1. Epub 2017 Jun 29.
20 Large-scale expression study of human mesial temporal lobe epilepsy: evidence for dysregulation of the neurotransmission and complement systems in the entorhinal cortex.Brain. 2006 Mar;129(Pt 3):625-41. doi: 10.1093/brain/awl001. Epub 2006 Jan 6.
21 Increased expression of the P2X7 receptor in temporal lobe epilepsy: Animal models and clinical evidence.Mol Med Rep. 2019 Jun;19(6):5433-5439. doi: 10.3892/mmr.2019.10202. Epub 2019 Apr 30.
22 Differential expression of phospholipase D isozymes in the hippocampus following kainic acid-induced seizures.J Neuropathol Exp Neurol. 2004 Aug;63(8):812-20. doi: 10.1093/jnen/63.8.812.
23 Increased expression of Nogo-A in hippocampal neurons of patients with temporal lobe epilepsy.Eur J Neurosci. 2004 Jul;20(1):195-206. doi: 10.1111/j.1460-9568.2004.03470.x.
24 Folate homeostasis in epileptic rats.Epilepsy Res. 2018 May;142:64-72. doi: 10.1016/j.eplepsyres.2018.03.014. Epub 2018 Mar 16.
25 Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy.Mol Cell Neurosci. 2018 Oct;92:93-103. doi: 10.1016/j.mcn.2018.07.004. Epub 2018 Jul 29.
26 Glutamate NMDA receptor subunit R1 and GAD mRNA expression in human temporal lobe epilepsy.Cell Mol Neurobiol. 2002 Dec;22(5-6):689-98. doi: 10.1023/a:1021852907068.
27 Impaired expression and function of group II metabotropic glutamate receptors in pilocarpine-treated chronically epileptic rats.Brain Res. 2008 Nov 13;1240:165-76. doi: 10.1016/j.brainres.2008.08.084. Epub 2008 Sep 10.
28 Increased protein expression of VEGF-A, VEGF-B, VEGF-C and their receptors in the temporal neocortex of pharmacoresistant temporal lobe epilepsy patients.J Neuroimmunol. 2019 Mar 15;328:68-72. doi: 10.1016/j.jneuroim.2018.12.007. Epub 2018 Dec 21.
29 Spontaneous release of neuropeptide Y tonically inhibits recurrent mossy fiber synaptic transmission in epileptic brain.J Neurosci. 2005 Feb 16;25(7):1718-29. doi: 10.1523/JNEUROSCI.4835-04.2005.
30 Increased expression of the neuronal glutamate transporter (EAAT3/EAAC1) in hippocampal and neocortical epilepsy.Epilepsia. 2002 Mar;43(3):211-8. doi: 10.1046/j.1528-1157.2002.35001.x.
31 Abnormal expression and spatiotemporal change of Slit2 in neurons and astrocytes in temporal lobe epileptic foci: A study of epileptic patients and experimental animals.Brain Res. 2010 Apr 9;1324:14-23. doi: 10.1016/j.brainres.2010.02.007. Epub 2010 Feb 12.
32 Increased expression of TRPV1 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy.J Mol Neurosci. 2013 Jan;49(1):182-93. doi: 10.1007/s12031-012-9878-2. Epub 2012 Aug 31.
33 Polymorphism of the multidrug resistance 1 gene MDR1/ABCB1 C3435T and response to antiepileptic drug treatment in temporal lobe epilepsy. Seizure. 2015 Jan;24:124-6.
34 Adenosine dysfunction in epilepsy.Glia. 2012 Aug;60(8):1234-43. doi: 10.1002/glia.22285. Epub 2011 Dec 22.
35 The levels of renin-angiotensin related components are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy.Neurochem Int. 2012 Jul;61(1):54-62. doi: 10.1016/j.neuint.2012.04.012. Epub 2012 Apr 20.
36 TRPV4-induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice.Cell Death Dis. 2019 May 16;10(6):386. doi: 10.1038/s41419-019-1612-3.
37 Arginine vasopressin in the pathogenesis of febrile convulsion and temporal lobe epilepsy.Neuroreport. 2002 Nov 15;13(16):2045-8. doi: 10.1097/00001756-200211150-00011.
38 Role of kinin B1 and B2 receptors in the development of pilocarpine model of epilepsy.Brain Res. 2004 Jul 2;1013(1):30-9. doi: 10.1016/j.brainres.2004.03.046.
39 Regulation of calcium channel alpha(1A) subunit splice variant mRNAs in kainate-induced temporal lobe epilepsy.Neurobiol Dis. 1999 Aug;6(4):288-301. doi: 10.1006/nbdi.1999.0248.
40 Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy.PLoS One. 2010 May 17;5(5):e10683. doi: 10.1371/journal.pone.0010683.
41 Amygdala-kindled seizures increase the expression of corticotropin-releasing factor (CRF) and CRF-binding protein in GABAergic interneurons of the dentate hilus.Brain Res. 1997 Jan 16;745(1-2):248-56. doi: 10.1016/s0006-8993(96)01157-2.
42 CXCR4 antagonist AMD3100 reverses the neurogenesis promoted by enriched environment and suppresses long-term seizure activity in adult rats of temporal lobe epilepsy.Behav Brain Res. 2017 Mar 30;322(Pt A):83-91. doi: 10.1016/j.bbr.2017.01.014. Epub 2017 Jan 16.
43 Kainate-induced seizures alter protein composition and N-methyl-D-aspartate receptor function of rat forebrain postsynaptic densities.Neuroscience. 2001;102(1):65-74. doi: 10.1016/s0306-4522(00)00469-3.
44 Gene expression of glutamate metabolizing enzymes in the hippocampal formation in human temporal lobe epilepsy.Epilepsia. 2013 Feb;54(2):228-38. doi: 10.1111/epi.12008. Epub 2012 Nov 13.
45 Altered hippocampal kainate-receptor mRNA levels in temporal lobe epilepsy patients.Neurobiol Dis. 1998 Sep;5(3):151-76. doi: 10.1006/nbdi.1998.0200.
46 MicroRNA-139-5p negatively regulates NR2A-containing NMDA receptor in the rat pilocarpine model and patients with temporal lobe epilepsy.Epilepsia. 2016 Nov;57(11):1931-1940. doi: 10.1111/epi.13568. Epub 2016 Oct 12.
47 Expression analysis of metabotropic glutamate receptors I and III in mouse strains with different susceptibility to experimental temporal lobe epilepsy.Neurosci Lett. 2005 Mar 3;375(3):192-7. doi: 10.1016/j.neulet.2004.11.008. Epub 2004 Dec 10.
48 Conditional Knock-out of mGluR5 from Astrocytes during Epilepsy Development Impairs High-Frequency Glutamate Uptake.J Neurosci. 2019 Jan 23;39(4):727-742. doi: 10.1523/JNEUROSCI.1148-18.2018. Epub 2018 Nov 30.
49 Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy.Ann Neurol. 2011 Sep;70(3):454-64. doi: 10.1002/ana.22479.
50 The 5-HT1A receptor and 5-HT transporter in temporal lobe epilepsy.Neurology. 2013 Apr 16;80(16):1465-71. doi: 10.1212/WNL.0b013e31828cf809. Epub 2013 Mar 20.
51 A functional genetic variation of the 5-HTR2A receptor affects age at onset in patients with temporal lobe epilepsy.Ann Hum Genet. 2012 Jul;76(4):277-82. doi: 10.1111/j.1469-1809.2012.00713.x.
52 Chronic deficit in the expression of voltage-gated potassium channel Kv3.4 subunit in the hippocampus of pilocarpine-treated epileptic rats.Brain Res. 2011 Jan 12;1368:308-16. doi: 10.1016/j.brainres.2010.10.047. Epub 2010 Oct 21.
53 Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 .J Neuroinflammation. 2012 Dec 28;9:280. doi: 10.1186/1742-2094-9-280.
54 Ablation of neuropsin-neuregulin 1 signaling imbalances ErbB4 inhibitory networks and disrupts hippocampal gamma oscillation.Transl Psychiatry. 2017 Mar 7;7(3):e1052. doi: 10.1038/tp.2017.20.
55 Altered hippocampal myelinated fiber integrity in a lithium-pilocarpine model of temporal lobe epilepsy: a histopathological and stereological investigation.Brain Res. 2013 Jul 19;1522:76-87. doi: 10.1016/j.brainres.2013.05.026. Epub 2013 May 28.
56 Glycine transporter 1 is a target for the treatment of epilepsy.Neuropharmacology. 2015 Dec;99:554-65. doi: 10.1016/j.neuropharm.2015.08.031. Epub 2015 Aug 21.
57 Curcumin reduces development of seizurelike events in the hippocampal-entorhinal cortex slice culture model for epileptogenesis.Epilepsia. 2019 Apr;60(4):605-614. doi: 10.1111/epi.14667. Epub 2019 Feb 12.
58 Cellular compartmentalization of phosphorylated eIF2alpha and neuronal NOS in human temporal lobe epilepsy with hippocampal sclerosis.J Neurol Sci. 2003 May 15;209(1-2):31-9. doi: 10.1016/s0022-510x(02)00461-6.
59 TrkB-Shc Signaling Protects against Hippocampal Injury Following Status Epilepticus.J Neurosci. 2019 Jun 5;39(23):4624-4630. doi: 10.1523/JNEUROSCI.2939-18.2019. Epub 2019 Mar 29.
60 Roles of K(+) and cation channels in ORL-1 receptor-mediated depression of neuronal excitability and epileptic activities in the medial entorhinal cortex.Neuropharmacology. 2019 Jun;151:144-158. doi: 10.1016/j.neuropharm.2019.04.017. Epub 2019 Apr 15.
61 Alteration of purinergic P2X4 and P2X7 receptor expression in rats with temporal-lobe epilepsy induced by pilocarpine.Epilepsy Res. 2009 Feb;83(2-3):157-67. doi: 10.1016/j.eplepsyres.2008.10.008. Epub 2008 Dec 12.
62 The Phosphodiesterase 10A Inhibitor PF-2545920 Enhances Hippocampal Excitability and Seizure Activity Involving the Upregulation of GluA1 and NR2A in Post-synaptic Densities.Front Mol Neurosci. 2017 Apr 7;10:100. doi: 10.3389/fnmol.2017.00100. eCollection 2017.
63 Inhibition of Cgkii Suppresses Seizure Activity and Hippocampal Excitation by Regulating the Postsynaptic Delivery of Glua1.Cell Physiol Biochem. 2018;46(1):160-177. doi: 10.1159/000488419. Epub 2018 Mar 21.
64 Expression of brain specific chondroitin sulfate proteoglycans, neurocan and phosphacan, in the developing and adult hippocampus of Ihara's epileptic rats.Brain Res. 2001 Apr 13;898(1):36-48. doi: 10.1016/s0006-8993(01)02128-x.
65 Repulsive guidance molecule a suppresses seizures and mossy fiber sprouting via the FAKp120RasGAPRas signaling pathway.Mol Med Rep. 2019 Apr;19(4):3255-3262. doi: 10.3892/mmr.2019.9951. Epub 2019 Feb 14.
66 Failure to find association between febrile seizures and SCN1A rs3812718 polymorphism in south Indian patients with mesial temporal lobe epilepsy and hippocampal sclerosis.Epilepsy Res. 2012 Sep;101(3):288-92. doi: 10.1016/j.eplepsyres.2012.04.009. Epub 2012 May 10.
67 Regulation of Cu-Zn superoxide dismutase on SCN2A in SH-SY5Y cells as a potential therapy for temporal lobe epilepsy.Mol Med Rep. 2014 Jan;9(1):16-22. doi: 10.3892/mmr.2013.1790. Epub 2013 Nov 11.
68 Selective targeting of Scn8a prevents seizure development in a mouse model of mesial temporal lobe epilepsy.Sci Rep. 2018 Jan 9;8(1):126. doi: 10.1038/s41598-017-17786-0.
69 Increased expression of sonic hedgehog in temporal lobe epileptic foci in humans and experimental rats.Neuroscience. 2011 May 19;182:62-70. doi: 10.1016/j.neuroscience.2011.02.060. Epub 2011 Mar 3.
70 Brain microstructural abnormalities correlate with KCC2 downregulation in refractory epilepsy.Neuroreport. 2019 Apr 10;30(6):409-414. doi: 10.1097/WNR.0000000000001216.
71 SLC1A2 mediates refractory temporal lobe epilepsy with an initial precipitating injury by targeting the glutamatergic synapse pathway.IUBMB Life. 2019 Feb;71(2):213-222. doi: 10.1002/iub.1956. Epub 2018 Oct 25.
72 Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1.J Neurosci Res. 2004 Aug 1;77(3):402-9. doi: 10.1002/jnr.20171.
73 SRR intronic variation inhibits expression of its neighbouring SMG6 gene and protects against temporal lobe epilepsy.J Cell Mol Med. 2018 Mar;22(3):1883-1893. doi: 10.1111/jcmm.13473. Epub 2018 Jan 24.
74 Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy.Brain. 2007 Jul;130(Pt 7):1942-56. doi: 10.1093/brain/awm118. Epub 2007 May 28.
75 Up-regulated BAFF and BAFF receptor expression in patients with intractable temporal lobe epilepsy and a pilocarpine-induced epilepsy rat model.Seizure. 2017 May;48:79-88. doi: 10.1016/j.seizure.2017.03.016. Epub 2017 Apr 8.
76 [(18) F]GE180 positron emission tomographic imaging indicates a potential double-hit insult in the intrahippocampal kainate mouse model of temporal lobe epilepsy.Epilepsia. 2018 Mar;59(3):617-626. doi: 10.1111/epi.14009. Epub 2018 Jan 24.
77 Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy.Proteomics. 2008 Feb;8(3):582-603. doi: 10.1002/pmic.200700514.
78 Increased expression of WNK3 in dispersed granule cells in hippocampal sclerosis of mesial temporal lobe epilepsy patients.Epilepsy Res. 2018 Nov;147:58-61. doi: 10.1016/j.eplepsyres.2018.09.006. Epub 2018 Sep 17.
79 Regulation of ADAM10 by MicroRNA-23a Contributes to Epileptogenesis in Pilocarpine-Induced Status Epilepticus Mice.Front Cell Neurosci. 2019 Apr 30;13:180. doi: 10.3389/fncel.2019.00180. eCollection 2019.
80 A clinical-grade gene therapy vector for pharmacoresistant epilepsy successfully overexpresses NPY in a human neuronal cell line.Seizure. 2018 Feb;55:25-29. doi: 10.1016/j.seizure.2017.12.005. Epub 2017 Dec 18.
81 Tryptophan hydroxylase 2 (TPH2) gene polymorphisms and psychiatric comorbidities in temporal lobe epilepsy.Epilepsy Behav. 2014 Mar;32:59-63. doi: 10.1016/j.yebeh.2014.01.007. Epub 2014 Feb 1.
82 Association between Vitamin D Receptor Gene Polymorphisms with Childhood Temporal Lobe Epilepsy.Int J Environ Res Public Health. 2015 Oct 30;12(11):13913-22. doi: 10.3390/ijerph121113913.
83 Development of epileptiform excitability in the deep entorhinal cortex after status epilepticus.Eur J Neurosci. 2009 Aug;30(4):611-24. doi: 10.1111/j.1460-9568.2009.06863.x. Epub 2009 Aug 10.
84 ERG3 potassium channel-mediated suppression of neuronal intrinsic excitability and prevention of seizure generation in mice.J Physiol. 2018 Oct;596(19):4729-4752. doi: 10.1113/JP275970. Epub 2018 Sep 7.
85 Dynamic expression of adenylate kinase 2 in the hippocampus of pilocarpine model rats.J Mol Neurosci. 2012 May;47(1):150-7. doi: 10.1007/s12031-011-9703-3. Epub 2012 Jan 14.
86 A Novel RNA Editing Sensor Tool and a Specific Agonist Determine Neuronal Protein Expression of RNA-Edited Glycine Receptors and Identify a Genomic APOBEC1 Dimorphism as a New Genetic Risk Factor of Epilepsy.Front Mol Neurosci. 2018 Jan 11;10:439. doi: 10.3389/fnmol.2017.00439. eCollection 2017.
87 Brain morphometric comparison of first-episode schizophrenia and temporal lobe epilepsy.Br J Psychiatry. 1997 Jun;170:515-9. doi: 10.1192/bjp.170.6.515.
88 CDYL suppresses epileptogenesis in mice through repression of axonal Nav1.6 sodium channel expression.Nat Commun. 2017 Aug 25;8(1):355. doi: 10.1038/s41467-017-00368-z.
89 Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy.Brain Res. 2009 Feb 19;1255:180-9. doi: 10.1016/j.brainres.2008.12.008. Epub 2008 Dec 11.
90 DEPDC5 mutations are not a frequent cause of familial temporal lobe epilepsy.Epilepsia. 2015 Oct;56(10):e168-71. doi: 10.1111/epi.13094. Epub 2015 Jul 27.
91 Increased expression of DOC2A in human and rat temporal lobe epilepsy.Epilepsy Res. 2019 Mar;151:78-84. doi: 10.1016/j.eplepsyres.2019.02.008. Epub 2019 Feb 25.
92 High-Throughput Data of Circular RNA Profiles in Human Temporal Cortex Tissue Reveals Novel Insights into Temporal Lobe Epilepsy.Cell Physiol Biochem. 2018;45(2):677-691. doi: 10.1159/000487161. Epub 2018 Jan 31.
93 DSP-4 induced depletion of brain noradrenaline and increased 6-hertz psychomotor seizure susceptibility in mice is prevented by sodium valproate.Brain Res Bull. 2018 Sep;142:263-269. doi: 10.1016/j.brainresbull.2018.08.002. Epub 2018 Aug 8.
94 Increased expression of gamma-aminobutyric acid type B receptors in the hippocampus of patients with temporal lobe epilepsy.Neurosci Lett. 2003 Dec 4;352(2):141-5. doi: 10.1016/j.neulet.2003.08.046.
95 Splice-specific roles of glycine receptor alpha3 in the hippocampus.Eur J Neurosci. 2009 Sep;30(6):1077-91. doi: 10.1111/j.1460-9568.2009.06903.x. Epub 2009 Sep 1.
96 Familial temporal lobe epilepsy as a presenting feature of choreoacanthocytosis.Epilepsia. 2005 Aug;46(8):1256-63. doi: 10.1111/j.1528-1167.2005.65804.x.
97 Functional variant in complement C3 gene promoter and genetic susceptibility to temporal lobe epilepsy and febrile seizures.PLoS One. 2010 Sep 16;5(9):e12740. doi: 10.1371/journal.pone.0012740.
98 A Kv4.2 truncation mutation in a patient with temporal lobe epilepsy.Neurobiol Dis. 2006 Nov;24(2):245-53. doi: 10.1016/j.nbd.2006.07.001. Epub 2006 Aug 24.
99 Association of mitochondrial letm1 with epileptic seizures.Cereb Cortex. 2014 Oct;24(10):2533-40. doi: 10.1093/cercor/bht118. Epub 2013 May 3.
100 Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus.EBioMedicine. 2019 Sep;47:470-483. doi: 10.1016/j.ebiom.2019.08.050. Epub 2019 Aug 29.
101 Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy.Sci Transl Med. 2018 May 30;10(443):eaar3796. doi: 10.1126/scitranslmed.aar3796.
102 Phosphorylation of the HCN channel auxiliary subunit TRIP8b is altered in an animal model of temporal lobe epilepsy and modulates channel function.J Biol Chem. 2019 Oct 25;294(43):15743-15758. doi: 10.1074/jbc.RA119.010027. Epub 2019 Sep 5.
103 Does education play a role in language reorganization after surgery in drug refractory temporal lobe epilepsy: An fMRI based study?.Epilepsy Res. 2017 Oct;136:88-96. doi: 10.1016/j.eplepsyres.2017.07.017. Epub 2017 Jul 29.
104 LncRNA FTX inhibits hippocampal neuron apoptosis by regulating miR-21-5p/SOX7 axis in a rat model of temporal lobe epilepsy.Biochem Biophys Res Commun. 2019 Apr 23;512(1):79-86. doi: 10.1016/j.bbrc.2019.03.019. Epub 2019 Mar 11.
105 Expression of mRNAs encoding for 17beta-hydroxisteroid dehydrogenase isozymes 1, 2, 3 and 4 in epileptic human hippocampus.Epilepsy Res. 2000 Aug;41(1):83-91. doi: 10.1016/s0920-1211(00)00130-3.
106 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
107 Novel carboxypeptidase A6 (CPA6) mutations identified in patients with juvenile myoclonic and generalized epilepsy.PLoS One. 2015 Apr 13;10(4):e0123180. doi: 10.1371/journal.pone.0123180. eCollection 2015.
108 A novel LGI1 missense mutation causes dysfunction in cortical neuronal migration and seizures.Brain Res. 2019 Oct 15;1721:146332. doi: 10.1016/j.brainres.2019.146332. Epub 2019 Jul 10.
109 Cerebral aquaporin-4 expression is independent of seizures in tuberous sclerosis complex.Neurobiol Dis. 2019 Sep;129:93-101. doi: 10.1016/j.nbd.2019.05.003. Epub 2019 May 9.
110 Atlastin-1 modulates seizure activity and neuronal excitability.CNS Neurosci Ther. 2020 Mar;26(3):385-393. doi: 10.1111/cns.13258. Epub 2019 Nov 14.
111 Gene expression variance in hippocampal tissue of temporal lobe epilepsy patients corresponds to differential memory performance.Neurobiol Dis. 2016 Feb;86:121-30. doi: 10.1016/j.nbd.2015.11.011. Epub 2015 Nov 26.
112 Kainate-induced epileptic seizures induce a recruitment of caldendrin to the postsynaptic density in rat brain.Brain Res Mol Brain Res. 2003 Aug 19;116(1-2):159-62. doi: 10.1016/s0169-328x(03)00235-3.
113 Depression and Temporal Lobe Epilepsy: Expression Pattern of Calbindin Immunoreactivity in Hippocampal Dentate Gyrus of Patients Who Underwent Epilepsy Surgery with and without Comorbid Depression.Behav Neurol. 2019 May 2;2019:7396793. doi: 10.1155/2019/7396793. eCollection 2019.
114 No association between polymorphisms in the calcium homeostasis modulator 1 gene and mesial temporal lobe epilepsy risk in a Chinese population.Seizure. 2014 Mar;23(3):231-3. doi: 10.1016/j.seizure.2013.11.010. Epub 2013 Nov 23.
115 Kainic acid-induced F-344 rat model of mesial temporal lobe epilepsy: gene expression and canonical pathways.Toxicol Pathol. 2009 Oct;37(6):776-89. doi: 10.1177/0192623309344202. Epub 2009 Aug 21.
116 Impact of anti-CASPR2 autoantibodies from patients with autoimmune encephalitis on CASPR2/TAG-1 interaction and Kv1 expression.J Autoimmun. 2019 Sep;103:102284. doi: 10.1016/j.jaut.2019.05.012. Epub 2019 Jun 6.
117 Mitochondrial dysfunction and ultrastructural damage in the hippocampus of pilocarpine-induced epileptic rat.Neurosci Lett. 2007 Jan 10;411(2):152-7. doi: 10.1016/j.neulet.2006.10.022. Epub 2006 Nov 7.
118 Up-regulated cytoplasmic FMRP-interacting protein 1 in intractable temporal lobe epilepsy patients and a rat model.Int J Neurosci. 2016 Jun;126(6):542-551. doi: 10.3109/00207454.2015.1038711. Epub 2015 Aug 21.
119 Drebrin A expression is altered after pilocarpine-induced seizures: time course of changes is consistent for a role in the integrity and stability of dendritic spines of hippocampal granule cells.Hippocampus. 2012 Mar;22(3):477-93. doi: 10.1002/hipo.20914. Epub 2011 Jan 14.
120 Neuroimaging-based brain-age prediction in diverse forms of epilepsy: a signature of psychosis and beyond.Mol Psychiatry. 2021 Mar;26(3):825-834. doi: 10.1038/s41380-019-0446-9. Epub 2019 Jun 3.
121 Altered expression of Dscam in temporal lobe tissue from human and experimental animals.Synapse. 2011 Oct;65(10):975-82. doi: 10.1002/syn.20924. Epub 2011 Mar 28.
122 Upregulation of dysbindin in temporal lobe epileptic foci of human and experimental animals.Synapse. 2012 Jul;66(7):622-9. doi: 10.1002/syn.21548. Epub 2012 Mar 30.
123 Neuroprotective role of dexmedetomidine in epilepsy surgery: A preliminary study.Neurol India. 2019 Jan-Feb;67(1):163-168. doi: 10.4103/0028-3886.253616.
124 Decreased expression of Gab2 in patients with temporal lobe epilepsy and pilocarpine-induced rat model.Synapse. 2014 Apr;68(4):168-77. doi: 10.1002/syn.21725. Epub 2013 Dec 20.
125 Promoter variants determine -aminobutyric acid homeostasis-related gene transcription in human epileptic hippocampi.J Neuropathol Exp Neurol. 2011 Dec;70(12):1080-8. doi: 10.1097/NEN.0b013e318238b9af.
126 Expression of glutamine synthetase and glutamate dehydrogenase in the latent phase and chronic phase in the kainate model of temporal lobe epilepsy.Glia. 2008 Jun;56(8):856-68. doi: 10.1002/glia.20659.
127 The RNA binding domain of Jerky consists of tandemly arranged helix-turn-helix/homeodomain-like motifs and binds specific sets of mRNAs.Mol Cell Biol. 2003 Jun;23(12):4083-93. doi: 10.1128/MCB.23.12.4083-4093.2003.
128 BACE1 elevation is associated with aberrant limbic axonal sprouting in epileptic CD1 mice.Exp Neurol. 2012 May;235(1):228-37. doi: 10.1016/j.expneurol.2012.01.003. Epub 2012 Jan 11.
129 Effects of JIP3 on epileptic seizures: Evidence from temporal lobe epilepsy patients, kainic-induced acute seizures and pentylenetetrazole-induced kindled seizures.Neuroscience. 2015 Aug 6;300:314-24. doi: 10.1016/j.neuroscience.2015.05.008. Epub 2015 May 19.
130 Expression pattern of Mical-1 in the temporal neocortex of patients with intractable temporal epilepsy and pilocarpine-induced rat model.Synapse. 2011 Nov;65(11):1213-21. doi: 10.1002/syn.20961. Epub 2011 Jun 17.
131 ATPase N-ethylmaleimide-sensitive Fusion Protein: A Novel Key Player for Causing Spontaneous Network Excitation in Human Temporal Lobe Epilepsy.Neuroscience. 2018 Feb 10;371:371-383. doi: 10.1016/j.neuroscience.2017.12.013. Epub 2017 Dec 17.
132 Dynorphin-based "release on demand" gene therapy for drug-resistant temporal lobe epilepsy.EMBO Mol Med. 2019 Oct;11(10):e9963. doi: 10.15252/emmm.201809963. Epub 2019 Sep 5.
133 Proportional loss of parvalbumin-immunoreactive synaptic boutons and granule cells from the hippocampus of sea lions with temporal lobe epilepsy.J Comp Neurol. 2019 Oct 1;527(14):2341-2355. doi: 10.1002/cne.24680. Epub 2019 Mar 22.
134 Extending the phenotypic spectrum of RBFOX1 deletions: Sporadic focal epilepsy.Epilepsia. 2015 Sep;56(9):e129-33. doi: 10.1111/epi.13076. Epub 2015 Jul 15.
135 Reelin, tau phosphorylation and psychiatric complications in patients with hippocampal sclerosis and structural abnormalities in temporal lobe epilepsy.Epilepsy Behav. 2019 Jul;96:192-199. doi: 10.1016/j.yebeh.2019.04.052. Epub 2019 May 29.
136 Induction of sodium channel Na(x) (SCN7A) expression in rat and human hippocampus in temporal lobe epilepsy.Epilepsia. 2010 Sep;51(9):1791-800. doi: 10.1111/j.1528-1167.2010.02678.x. Epub 2010 Aug 5.
137 Elevated Expression of the Delta-Subunit of Epithelial Sodium Channel in Temporal Lobe Epilepsy Patients and Rat Model.J Mol Neurosci. 2015 Dec;57(4):510-8. doi: 10.1007/s12031-015-0630-6. Epub 2015 Aug 1.
138 Changes in the expression of selenoproteins in mesial temporal lobe epilepsy patients.Cell Mol Neurobiol. 2009 Dec;29(8):1223-31. doi: 10.1007/s10571-009-9418-y.
139 Sema7A, a brain immune regulator, regulates seizure activity in PTZ-kindled epileptic rats.CNS Neurosci Ther. 2020 Jan;26(1):101-116. doi: 10.1111/cns.13181. Epub 2019 Jun 9.
140 Endophilin A1 mediates seizure activity via regulation of AMPARs in a PTZ-kindled epileptic mouse model.Exp Neurol. 2018 Jun;304:41-57. doi: 10.1016/j.expneurol.2018.02.014. Epub 2018 Feb 24.
141 Expression pattern of sorting Nexin 25 in temporal lobe epilepsy: a study on patients and pilocarpine-induced rats.Brain Res. 2013 May 6;1509:79-85. doi: 10.1016/j.brainres.2013.03.005. Epub 2013 Mar 18.
142 Spastin in the human and mouse central nervous system with special reference to its expression in the hippocampus of mouse pilocarpine model of status epilepticus and temporal lobe epilepsy.Neurochem Int. 2006 Dec;49(7):651-64. doi: 10.1016/j.neuint.2006.05.008. Epub 2006 Jul 7.
143 Off-Label Use of Bumetanide for Brain Disorders: An Overview.Front Neurosci. 2019 Apr 24;13:310. doi: 10.3389/fnins.2019.00310. eCollection 2019.
144 Doublecortin-expressing cell types in temporal lobe epilepsy.Acta Neuropathol Commun. 2018 Jul 13;6(1):60. doi: 10.1186/s40478-018-0566-5.
145 Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain. 2007 Jan;130(Pt 1):100-9. doi: 10.1093/brain/awl272. Epub 2006 Oct 4.