General Information of Drug Off-Target (DOT) (ID: OTXT7BCU)

DOT Name Transmembrane protein 87B (TMEM87B)
Gene Name TMEM87B
Related Disease
Atrial septal defect ( )
Microcephaly ( )
Restrictive cardiomyopathy ( )
Skeletal dysplasia ( )
Acute myelogenous leukaemia ( )
UniProt ID
TM87B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF06814
Sequence
MVAACRSVAGLLPRRRRCFPARAPLLRVALCLLCWTPAAVRAVPELGLWLETVNDKSGPL
IFRKTMFNSTDIKLSVKSFHCSGPVKFTIVWHLKYHTCHNEHSNLEELFQKHKLSVDEDF
CHYLKNDNCWTTKNENLDCNSDSQVFPSLNNKELINIRNVSNQERSMDVVARTQKDGFHI
FIVSIKTENTDASWNLNVSLSMIGPHGYISASDWPLMIFYMVMCIVYILYGILWLTWSAC
YWKDILRIQFWIAAVIFLGMLEKAVFYSEYQNISNTGLSTQGLLIFAELISAIKRTLARL
LVIIVSLGYGIVKPRLGTVMHRVIGLGLLYLIFAAVEGVMRVIGGSNHLAVVLDDIILAV
IDSIFVWFIFISLAQTMKTLRLRKNTVKFSLYRHFKNTLIFAVLASIVFMGWTTKTFRIA
KCQSDWMERWVDDAFWSFLFSLILIVIMFLWRPSANNQRYAFMPLIDDSDDEIEEFMVTS
ENLTEGIKLRASKSVSNGTAKPATSENFDEDLKWVEENIPSSFTDVALPVLVDSDEEIMT
RSEMAEKMFSSEKIM
Function May be involved in retrograde transport from endosomes to the trans-Golgi network (TGN).

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Atrial septal defect DISJT76B Strong Genetic Variation [1]
Microcephaly DIS2GRD8 Strong Genetic Variation [1]
Restrictive cardiomyopathy DISFAF31 Strong Genetic Variation [1]
Skeletal dysplasia DIS5Z8U6 Strong Genetic Variation [1]
Acute myelogenous leukaemia DISCSPTN Limited Genetic Variation [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Transmembrane protein 87B (TMEM87B). [3]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Transmembrane protein 87B (TMEM87B). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Transmembrane protein 87B (TMEM87B). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Transmembrane protein 87B (TMEM87B). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Transmembrane protein 87B (TMEM87B). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Transmembrane protein 87B (TMEM87B). [8]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Transmembrane protein 87B (TMEM87B). [9]
Testosterone DM7HUNW Approved Testosterone increases the expression of Transmembrane protein 87B (TMEM87B). [9]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Transmembrane protein 87B (TMEM87B). [10]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Transmembrane protein 87B (TMEM87B). [11]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Transmembrane protein 87B (TMEM87B). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Transmembrane protein 87B (TMEM87B). [13]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Transmembrane protein 87B (TMEM87B). [15]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Transmembrane protein 87B (TMEM87B). [16]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Transmembrane protein 87B (TMEM87B). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Transmembrane protein 87B (TMEM87B). [14]
------------------------------------------------------------------------------------

References

1 Discovery of a potentially deleterious variant in TMEM87B in a patient with a hemizygous 2q13 microdeletion suggests a recessive condition characterized by congenital heart disease and restrictive cardiomyopathy.Cold Spring Harb Mol Case Stud. 2016 May;2(3):a000844. doi: 10.1101/mcs.a000844.
2 Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia.Oncotarget. 2017 Jan 31;8(5):7891-7899. doi: 10.18632/oncotarget.13631.
3 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
6 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
10 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
11 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
12 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
13 Inter- and intra-laboratory study to determine the reproducibility of toxicogenomics datasets. Toxicology. 2011 Nov 28;290(1):50-8.
14 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
15 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
16 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
17 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.