General Information of Drug Off-Target (DOT) (ID: OTYN9GX0)

DOT Name NAD kinase (NADK)
Synonyms EC 2.7.1.23; Poly(P)/ATP NAD kinase
Gene Name NADK
Related Disease
Matthew-Wood syndrome ( )
UniProt ID
NADK_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3PFN
EC Number
2.7.1.23
Pfam ID
PF01513 ; PF20143
Sequence
MEMEQEKMTMNKELSPDAAAYCCSACHGDETWSYNHPIRGRAKSRSLSASPALGSTKEFR
RTRSLHGPCPVTTFGPKACVLQNPQTIMHIQDPASQRLTWNKSPKSVLVIKKMRDASLLQ
PFKELCTHLMEENMIVYVEKKVLEDPAIASDESFGAVKKKFCTFREDYDDISNQIDFIIC
LGGDGTLLYASSLFQGSVPPVMAFHLGSLGFLTPFSFENFQSQVTQVIEGNAAVVLRSRL
KVRVVKELRGKKTAVHNGLGENGSQAAGLDMDVGKQAMQYQVLNEVVIDRGPSSYLSNVD
VYLDGHLITTVQGDGVIVSTPTGSTAYAAAAGASMIHPNVPAIMITPICPHSLSFRPIVV
PAGVELKIMLSPEARNTAWVSFDGRKRQEIRHGDSISITTSCYPLPSICVRDPVSDWFES
LAQCLHWNVRKKQAHFEEEEEEEEEG
Tissue Specificity Widely expressed but not detected in skeletal muscle.
KEGG Pathway
Nicoti.te and nicoti.mide metabolism (hsa00760 )
Metabolic pathways (hsa01100 )
Biosynthesis of cofactors (hsa01240 )
Reactome Pathway
Nicotinate metabolism (R-HSA-196807 )
BioCyc Pathway
MetaCyc:HS00233-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Matthew-Wood syndrome DISA7HR7 Strong Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
7 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of NAD kinase (NADK). [2]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of NAD kinase (NADK). [6]
Quercetin DM3NC4M Approved Quercetin decreases the phosphorylation of NAD kinase (NADK). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of NAD kinase (NADK). [12]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of NAD kinase (NADK). [7]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of NAD kinase (NADK). [13]
Nicotinamide-Adenine-Dinucleotide DM9LRKB Investigative Nicotinamide-Adenine-Dinucleotide increases the phosphorylation of NAD kinase (NADK). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of NAD kinase (NADK). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of NAD kinase (NADK). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of NAD kinase (NADK). [5]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of NAD kinase (NADK). [8]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of NAD kinase (NADK). [9]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of NAD kinase (NADK). [10]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of NAD kinase (NADK). [10]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of NAD kinase (NADK). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Functional annotation of rare gene aberration drivers of pancreatic cancer.Nat Commun. 2016 Jan 25;7:10500. doi: 10.1038/ncomms10500.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
7 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
8 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
9 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
10 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
11 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
14 A second target of benzamide riboside: dihydrofolate reductase. Cancer Biol Ther. 2012 Nov;13(13):1290-8.