General Information of Drug Off-Target (DOT) (ID: OTYOS55H)

DOT Name Kelch-like protein 14 (KLHL14)
Synonyms Protein interactor of Torsin-1A; Printor; Protein interactor of torsinA
Gene Name KLHL14
Related Disease
Thyroid cancer ( )
Thyroid gland carcinoma ( )
Thyroid tumor ( )
Dystonia ( )
UniProt ID
KLH14_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07707 ; PF00651 ; PF01344
Sequence
MSRSGDRTSTFDPSHSDNLLHGLNLLWRKQLFCDVTLTAQGQQFHCHKAVLASCSQYFRS
LFSSHPPLGGGVGGQDGLGAPKDQQQPPQQQPSQQQQPPPQEEPGTPSSSPDDKLLTSPR
AINNLVLQGCSSIGLRLVLEYLYTANVTLSLDTVEEVLSVSKILHIPQVTKLCVQFLNDQ
ISVQNYKQVCKIAALHGLEETKKLANKYLVEDVLLLNFEEMRALLDSLPPPVESELALFQ
MSVLWLEHDRETRMQYAPDLMKRLRFALIPAPELVERVQSVDFMRTDPVCQKLLLDAMNY
HLMPFRQHCRQSLASRIRSNKKMLLLVGGLPPGPDRLPSNLVQYYDDEKKTWKILTIMPY
NSAHHCVVEVENFLFVLGGEDQWNPNGKHSTNFVSRYDPRFNSWIQLPPMQERRASFYAC
RLDKHLYVIGGRNETGYLSSVECYNLETNEWRYVSSLPQPLAAHAGAVHNGKIYISGGVH
NGEYVPWLYCYDPVMDVWARKQDMNTKRAIHTLAVMNDRLYAIGGNHLKGFSHLDVMLVE
CYDPKGDQWNILQTPILEGRSGPGCAVLDDSIYLVGGYSWSMGAYKSSTICYCPEKGTWT
ELEGDVAEPLAGPACVTVILPSCVPYNK

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Thyroid cancer DIS3VLDH Definitive Biomarker [1]
Thyroid gland carcinoma DISMNGZ0 Definitive Biomarker [1]
Thyroid tumor DISLVKMD Definitive Biomarker [1]
Dystonia DISJLFGW Strong Biomarker [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Kelch-like protein 14 (KLHL14). [3]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Kelch-like protein 14 (KLHL14). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Kelch-like protein 14 (KLHL14). [5]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Kelch-like protein 14 (KLHL14). [6]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Kelch-like protein 14 (KLHL14). [7]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Kelch-like protein 14 (KLHL14). [8]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Kelch-like protein 14 (KLHL14). [9]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Kelch-like protein 14 (KLHL14). [10]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Kelch-like protein 14 (KLHL14). [11]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Kelch-like protein 14 (KLHL14). [12]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol affects the expression of Kelch-like protein 14 (KLHL14). [13]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Kelch-like protein 14 (KLHL14). [14]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Kelch-like protein 14 (KLHL14). [10]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Kelch-like protein 14 (KLHL14). [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Kelch-like protein 14 (KLHL14). [16]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Kelch-like protein 14 (KLHL14). [17]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Kelch-like protein 14 (KLHL14). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Kelch-like protein 14 (KLHL14). [13]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Kelch-like protein 14 (KLHL14). [20]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Kelch-like protein 14 (KLHL14). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Kelch-like protein 14 (KLHL14). [19]
------------------------------------------------------------------------------------

References

1 A ceRNA Circuitry Involving the Long Noncoding RNA Klhl14-AS, Pax8, and Bcl2 Drives Thyroid Carcinogenesis.Cancer Res. 2019 Nov 15;79(22):5746-5757. doi: 10.1158/0008-5472.CAN-19-0039. Epub 2019 Sep 26.
2 A Role for Dystonia-Associated Genes in Spinal GABAergic Interneuron Circuitry.Cell Rep. 2017 Oct 17;21(3):666-678. doi: 10.1016/j.celrep.2017.09.079.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
8 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
9 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
10 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
11 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
12 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
13 The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent. Toxicology. 2010 Apr 11;270(2-3):137-49. doi: 10.1016/j.tox.2010.02.008. Epub 2010 Feb 17.
14 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
15 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
16 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
17 Synergistic effect of JQ1 and rapamycin for treatment of human osteosarcoma. Int J Cancer. 2015 May 1;136(9):2055-64.
18 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
19 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
20 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.