General Information of Disease (ID: DISLVKMD)

Disease Name Thyroid tumor
Synonyms
THYROID; tumor of thyroid gland; tumor of thyroid; tumour of the thyroid gland; tumor of the thyroid gland; thyroid neoplasms; thyroid neoplasm; thyroid gland neoplasm; neoplasm of thyroid gland; neoplasm of the thyroid; tumour of the thyroid; neoplasm of thyroid; thyroid gland neoplasm (disease); tumor of the thyroid; tumour of thyroid gland; thyroid tumor; tumour of thyroid; thyroid gland tumor; neoplasm of the thyroid gland; thyroid gland tumour
Definition A benign or malignant neoplasm affecting the thyroid gland.|Editor note: TODO
Disease Hierarchy
DIS5T3X5: Thyroid disease
DISTBY9Z: Tumour
DISGQU9D: Endocrine gland neoplasm
DISLVKMD: Thyroid tumor
Disease Identifiers
MONDO ID
MONDO_0015074
MESH ID
D013964
UMLS CUI
C0040136
MedGen ID
21546
HPO ID
HP:0100031
Orphanet ID
100087
SNOMED CT ID
127018007

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 1 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Ponatinib DMYGJQO Approved Small molecular drug [1]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 154 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
BMP1 TT0L58T Limited Biomarker [2]
CDK5R1 TTBYM6V Limited Biomarker [3]
EIF2AK2 TTXEZJ4 Limited Biomarker [4]
ENPP2 TTSCIM2 Limited Biomarker [5]
FYN TT2B9KF Limited Altered Expression [6]
GHRHR TTG4R8V Limited Altered Expression [7]
GJB3 TTVRQ8L Limited Altered Expression [8]
HIF1A TTSN6QU Limited Genetic Variation [9]
HRAS TT28ZON Limited Biomarker [10]
KSR1 TTHL1TV Limited Posttranslational Modification [11]
LASP1 TTZJA87 Limited Biomarker [12]
MAP2K7 TT6QY3J Limited Biomarker [13]
MAP4K4 TT6NI13 Limited Altered Expression [14]
MUC15 TTGQ6MI Limited Biomarker [15]
NRAS TTW2R9X Limited Biomarker [16]
PRKCE TT57MT2 Limited Biomarker [17]
RAPGEF3 TTOE7I0 Limited Altered Expression [18]
RAPGEF4 TTOS63B Limited Altered Expression [18]
S1PR2 TTVSMOH Limited Biomarker [19]
SCN10A TT90XZ8 Limited Biomarker [20]
SLC6A9 TTHJTF7 Limited Biomarker [21]
STOML2 TTOI329 Limited Altered Expression [22]
YES1 TT0SQ8J Limited Altered Expression [23]
ATIC TT9NVXQ Disputed Biomarker [24]
SORT1 TTRX9AV Disputed Biomarker [25]
ARAF TT5TURO moderate Genetic Variation [26]
BCAT2 TTF9OQ6 moderate Altered Expression [27]
BTG1 TTL7N2W moderate Altered Expression [28]
CCNE2 TTLDRGX moderate Altered Expression [29]
CDKN1A TT9GUW0 moderate Biomarker [30]
CNTN1 TTPR8FK moderate Biomarker [31]
CSF2 TTNYZG2 moderate Biomarker [5]
CYP3A4 TTWP7HQ moderate Genetic Variation [32]
EPO TTQG4NR moderate Biomarker [33]
EPOR TTAUX24 moderate Biomarker [33]
IFNA2 TTSIUJ9 moderate Therapeutic [34]
IL32 TTD4G7L moderate Biomarker [35]
LIMK1 TTWL9TY moderate Biomarker [36]
MAPKAP1 TTWDKCL moderate Altered Expression [37]
MVD TTE5J6X moderate Altered Expression [38]
PDGFA TTSM78N moderate Biomarker [5]
PRKCQ TT1MS7X moderate Biomarker [39]
PTGES2 TTWU04I moderate Biomarker [40]
RUNX2 TTD6SZ8 moderate Biomarker [41]
RXRA TT6PEUO moderate Biomarker [42]
SDHD TTVH9W8 moderate Genetic Variation [43]
SLC5A5 TTW7HI9 moderate Altered Expression [44]
TKTL1 TTNQ1J3 moderate Biomarker [45]
TPCN1 TTODQE2 moderate Biomarker [46]
TRPC1 TTA76X0 moderate Biomarker [47]
AKT3 TTO6SGY Strong Biomarker [48]
ALK TTPMQSO Strong Biomarker [49]
APEH TTYWEDQ Strong Genetic Variation [50]
ARG2 TTV1AG6 Strong Biomarker [51]
BRD4 TTSRAOU Strong Biomarker [52]
BUB1 TT78309 Strong Altered Expression [53]
CA12 TTSYM0R Strong Altered Expression [54]
CBX7 TTBN3HC Strong Altered Expression [55]
CCKBR TTVFO0U Strong Altered Expression [56]
CCL2 TTNAY0P Strong Biomarker [57]
CCND1 TTFCJ7S Strong Biomarker [58]
CDH5 TTXLCFO Strong Posttranslational Modification [59]
CDH6 TT9QHUK Strong Biomarker [60]
CDK1 TTH6V3D Strong Biomarker [61]
CDK5 TTL4Q97 Strong Biomarker [62]
CDKN2C TTBRUGA Strong Biomarker [63]
CEBPB TTUI35N Strong Altered Expression [64]
CXCL10 TTQOVYA Strong Biomarker [65]
CXCR1 TTMWT8Z Strong Altered Expression [66]
CYP19A1 TTSZLWK Strong Altered Expression [67]
CYP24A1 TT82UI1 Strong Biomarker [68]
EPCAM TTZ8WH4 Strong Altered Expression [69]
EZH1 TTNJA0C Strong Genetic Variation [70]
F9 TTFEZ5Q Strong Genetic Variation [71]
FGFR4 TT1KX2S Strong Biomarker [72]
FOLH1 TT9G4N0 Strong Altered Expression [73]
GDNF TTF23ML Strong Biomarker [74]
GPER1 TTDSB34 Strong Biomarker [75]
GPRC6A TTI1PRE Strong Genetic Variation [76]
GRK2 TTAZ3MN Strong Altered Expression [77]
HBB TTM6HK1 Strong Altered Expression [78]
HCAR3 TT8WFXV Strong Biomarker [79]
HMGA1 TTBA219 Strong Biomarker [80]
HMGA2 TTSTVM0 Strong Biomarker [81]
IL1R2 TT51DEV Strong Genetic Variation [82]
ITCH TT5SEWD Strong Biomarker [83]
JUP TTREN0G Strong Altered Expression [84]
KLB TTARBVH Strong Altered Expression [85]
KRAS TTM8FR7 Strong Biomarker [10]
KRT19 TT3JF9E Strong Altered Expression [86]
LGALS3 TTFPQV7 Strong Altered Expression [87]
LGR4 TTY6C71 Strong Altered Expression [88]
LOX TTQHNAM Strong Altered Expression [89]
MCM7 TT1RM3F Strong Altered Expression [90]
MLH1 TTISG27 Strong Genetic Variation [91]
MRGPRX1 TTIX6PK Strong Genetic Variation [76]
MSH2 TTCAWRT Strong Altered Expression [92]
MTDH TTH6SA5 Strong Altered Expression [93]
MUC1 TTBHFYQ Strong Biomarker [94]
NCOA4 TT8OY02 Strong Altered Expression [31]
NDUFA13 TTRU1NG Strong Biomarker [95]
NME1 TTDY8JH Strong Altered Expression [96]
NR1D1 TTAD1O8 Strong Genetic Variation [97]
NTRK1 TTTDVOJ Strong Biomarker [98]
NTRK3 TTXABCW Strong Biomarker [98]
OXER1 TT7WBSV Strong Genetic Variation [76]
PAK1 TTFN95D Strong Biomarker [99]
PCSK2 TT46F0P Strong Altered Expression [100]
PPARG TTT2SVW Strong Biomarker [101]
PPARGC1B TTKSQ3W Strong Genetic Variation [9]
PPM1D TTENJAB Strong Genetic Variation [102]
PRKAR1A TTNAHEX Strong Genetic Variation [98]
PTGS2 TTVKILB Strong Altered Expression [103]
PTH1R TTFPD47 Strong Altered Expression [104]
PTPRJ TTWMKXP Strong Genetic Variation [105]
RARB TTISP28 Strong Biomarker [106]
RGS4 TTGTKX9 Strong Biomarker [107]
RHBDF2 TTH1ZOP Strong Biomarker [108]
RHOB TT6LPFO Strong Biomarker [109]
RXRG TTH029C Strong Altered Expression [110]
SDC2 TT5H2F0 Strong Altered Expression [111]
SERPINB5 TT1KW50 Strong Posttranslational Modification [112]
SLC1A3 TT8WRDA Strong Altered Expression [113]
SLC26A4 TT7X02I Strong Genetic Variation [114]
SLCO2B1 TTDL3UZ Strong Biomarker [115]
SORD TTLSRBZ Strong Genetic Variation [116]
SSTR3 TTJX3UE Strong Altered Expression [117]
STC1 TTDLUER Strong Biomarker [118]
TEP1 TTQGAVX Strong Genetic Variation [119]
THBS1 TTKI0H1 Strong Genetic Variation [120]
THRA TTTSEPU Strong Genetic Variation [97]
THRB TTGER3L Strong Biomarker [121]
TIE1 TTT4236 Strong Altered Expression [122]
TPO TT52XDZ Strong Biomarker [87]
TSG101 TTHU7JA Strong Biomarker [123]
TXNIP TTTLDZK Strong Biomarker [124]
VDAC2 TTM1I7L Strong Altered Expression [125]
BAK1 TTFM7V0 Definitive Altered Expression [125]
CCR6 TTFDB30 Definitive Biomarker [126]
ELAVL1 TTPC9D0 Definitive Biomarker [127]
GAP43 TTSGLN5 Definitive Biomarker [128]
ID1 TTBXVDE Definitive Altered Expression [129]
IGFBP7 TTUQ01B Definitive Biomarker [130]
IL13RA2 TTMPZ7V Definitive Biomarker [131]
MMP11 TTZW4MV Definitive Biomarker [132]
PDGFB TTQA6SX Definitive Altered Expression [133]
PKM TT4LOT8 Definitive Biomarker [134]
PTK2 TTON5IT Definitive Biomarker [135]
SLIT2 TTDWK85 Definitive Biomarker [136]
SSTR1 TTIND6G Definitive Altered Expression [137]
SSTR2 TTZ6T9E Definitive Altered Expression [138]
STK4 TTCPLVN Definitive Biomarker [139]
TACSTD2 TTP2HE5 Definitive Altered Expression [140]
TP53BP1 TTX4UE9 Definitive Altered Expression [141]
------------------------------------------------------------------------------------
⏷ Show the Full List of 154 DTT(s)
This Disease Is Related to 3 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC16A2 DTQ8MP1 Limited Altered Expression [142]
SLC2A3 DT9SQ3L Strong Altered Expression [143]
SLC5A8 DTE3TAW Strong Genetic Variation [114]
------------------------------------------------------------------------------------
This Disease Is Related to 14 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CYB5R3 DE4A3BL Limited Biomarker [144]
DHRS3 DEXPVUN Limited Biomarker [145]
HIF1AN DEY1CBW Limited Biomarker [146]
MT1A DE5ME8A Limited Biomarker [147]
PTGDS DER3H9C Limited Altered Expression [148]
HPGD DEHKSC6 moderate Therapeutic [149]
UPP1 DEFZWAX moderate Altered Expression [150]
ALDH1A2 DEKN1H4 Strong Altered Expression [151]
BAAT DERA3OF Strong Genetic Variation [97]
CYP1A1 DE6OQ3W Strong Altered Expression [152]
GGCT DEKW6PB Strong Biomarker [153]
MINPP1 DE5Q1SP Strong Biomarker [154]
AKR1C2 DEOY5ZM Definitive Altered Expression [155]
NNMT DECVGJ3 Definitive Altered Expression [156]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 DME(s)
This Disease Is Related to 300 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
AFM OTPOR8IO Limited Biomarker [157]
AGPS OTFBFPV4 Limited Biomarker [158]
AKAP4 OTL4Z99V Limited Biomarker [159]
AMBP OTLU8GU8 Limited Altered Expression [160]
ANO5 OTOW8R6H Limited Altered Expression [161]
ATG9B OTJMJZW8 Limited Biomarker [162]
BASP1 OTF4VS5G Limited Altered Expression [163]
BHLHE41 OTY9GJ1Y Limited Biomarker [164]
BID OTOSHSHU Limited Biomarker [162]
BLM OTEJOAJX Limited Altered Expression [165]
BTG2 OTZF6K1H Limited Altered Expression [166]
CAPN5 OTQ8QM7K Limited Genetic Variation [167]
CCL15 OTOGZ85M Limited Biomarker [168]
CETN1 OTGQ8JOZ Limited Altered Expression [144]
CITED1 OTUJQ3VL Limited Biomarker [169]
COPZ1 OTJXGQQW Limited Biomarker [170]
CST6 OTZVHJTF Limited Biomarker [145]
CXCL14 OTM189TA Limited Biomarker [145]
DIAPH1 OTZBYPLH Limited Biomarker [144]
DIPK2A OTL1DBIM Limited Biomarker [144]
EHF OTY6TPWD Limited Altered Expression [171]
EIF4A3 OTYYFE7K Limited Biomarker [172]
EMSY OTBQ3KQE Limited Genetic Variation [167]
FHOD3 OT1WUBQX Limited Genetic Variation [173]
FLCN OTVM78XM Limited Genetic Variation [174]
FUCA1 OTW71IK4 Limited Altered Expression [175]
FXYD5 OT81DIOD Limited Altered Expression [160]
FZD1 OTZATHVS Limited Altered Expression [176]
FZD8 OTZ9IRFL Limited Altered Expression [177]
GATAD2A OTFM8D3O Limited Biomarker [178]
HMGN4 OTD7GPRL Limited Altered Expression [179]
HORMAD2 OTL2ENWI Limited Altered Expression [180]
HTRA3 OTXJ0H4X Limited Biomarker [181]
HUWE1 OTFH6BJS Limited Biomarker [182]
IFT88 OTDR3VBD Limited Altered Expression [183]
IGF2BP3 OTB97VIK Limited Biomarker [184]
IL17RB OT0KDNSF Limited Altered Expression [185]
ING5 OTRNNSFM Limited Biomarker [186]
KAZN OTPM7BYM Limited Biomarker [187]
KIR2DS5 OTXLEN11 Limited Genetic Variation [188]
LETM1 OT8N4MRU Limited Altered Expression [189]
LRP4 OTO4M459 Limited Altered Expression [190]
MAD2L1 OTXNGZCG Limited Altered Expression [53]
MREG OT0LUIRG Limited Biomarker [191]
NCOA5 OTOGWTWB Limited Biomarker [192]
NFIL3 OTQH9HM3 Limited Biomarker [193]
NOB1 OTW0YNSL Limited Altered Expression [194]
NRARP OTMYHUV2 Limited Biomarker [195]
PCBP1 OTHN0TD7 Limited Altered Expression [196]
PCM1 OTFM133C Limited Altered Expression [197]
PEG3 OTHQW98S Limited Biomarker [198]
POT1 OTNBXJCQ Limited Genetic Variation [199]
POU5F1B OT0FKQ51 Limited Genetic Variation [200]
PROX1 OT68R6IO Limited Biomarker [201]
PTGES3 OTPPQWI0 Limited Biomarker [3]
PTTG1 OTIMYS4W Limited Biomarker [202]
PTTG1IP OTX21QTE Limited Biomarker [202]
RAB11A OTC4FW0J Limited Altered Expression [203]
RAB40B OTCA9ZF5 Limited Altered Expression [204]
RPIA OT805SMH Limited Biomarker [205]
RRAS OTBBF28C Limited Biomarker [3]
SDF4 OTQ7WFYW Limited Altered Expression [144]
SDHC OTC8G2MX Limited Altered Expression [206]
SERPINE2 OTYF5340 Limited Biomarker [207]
SLC35F2 OTSAD4EQ Limited Biomarker [208]
SPRY4 OT2VK9N0 Limited Biomarker [209]
SRGAP1 OTL89HGW Limited Genetic Variation [210]
SRP72 OTPV73W7 Limited Altered Expression [173]
SYTL2 OTUIOWKL Limited Altered Expression [22]
TCP1 OT1MGUX9 Limited Biomarker [211]
TCTN1 OTG5KEV8 Limited Biomarker [212]
TIMP4 OT8A68SW Limited Altered Expression [213]
TINAGL1 OTZZO56M Limited Altered Expression [214]
TMED10 OTUXSHH7 Limited Biomarker [3]
TRIM29 OT2DNESG Limited Altered Expression [215]
TRIM44 OT0B1T2B Limited Biomarker [216]
ADGRE2 OTUYJVYG Disputed Biomarker [217]
ADGRE5 OTTSB84Q Disputed Biomarker [217]
BAG3 OTVXYUDQ Disputed Altered Expression [218]
DDT OTF5HTYL Disputed Biomarker [219]
ECM1 OT1K65VW Disputed Altered Expression [220]
GPD2 OTV232Y7 Disputed Biomarker [221]
IQGAP1 OTZRWTGA Disputed Altered Expression [222]
MYO1F OTOAV4AR Disputed Biomarker [223]
NCOA1 OTLIUJQD Disputed Altered Expression [224]
NEMP1 OTWN3S47 Disputed Biomarker [225]
PELI1 OTMLBCLC Disputed Biomarker [226]
PRDM6 OTKY12D9 Disputed Biomarker [226]
PRIMA1 OT9ITT3P Disputed Posttranslational Modification [227]
RASAL1 OTAHUNN7 Disputed Altered Expression [228]
RLN2 OTY3OG71 Disputed Biomarker [229]
TCIM OTARUXQF Disputed Genetic Variation [230]
TMPRSS4 OTCCGY2K Disputed Altered Expression [220]
ABCE1 OTH19LOA moderate Biomarker [231]
ATP5F1E OTMPLAIS moderate Altered Expression [232]
BCAM OTHZOPSD moderate Biomarker [27]
CARD11 OTRCTLYC moderate Altered Expression [233]
CCNG2 OTII38K2 moderate Biomarker [234]
CPSF2 OTU6QXZE moderate Biomarker [235]
CRYGD OTW29JC4 moderate Genetic Variation [236]
CTDSPL OTZJ0CZK moderate Biomarker [237]
DUSP4 OT6WAO12 moderate Biomarker [238]
FOXE1 OT5IR5IT moderate Altered Expression [239]
GNAS OTMH8BKJ moderate Genetic Variation [240]
GRB14 OTFET2YM moderate Altered Expression [241]
HABP2 OTAUIPW0 moderate Genetic Variation [242]
HLTF OTRX2OSF moderate Biomarker [243]
HOXC10 OT5WF17M moderate Biomarker [244]
MSH6 OT46FP09 moderate Biomarker [245]
NIBAN1 OTYOLI12 moderate Altered Expression [246]
PA2G4 OT7IG7HT moderate Altered Expression [228]
PDZK1IP1 OTWA6M5K moderate Altered Expression [247]
PPP6C OTR1STMJ moderate Biomarker [39]
RBX1 OTYA1UIO moderate Biomarker [248]
REC8 OT6JAVXE moderate Altered Expression [249]
RTN4IP1 OTHUZANE moderate Altered Expression [250]
SASH1 OTQA8BD4 moderate Biomarker [251]
SERPINA5 OTTZXPGD moderate Biomarker [238]
SLIT3 OTU8MKEU moderate Biomarker [252]
SNX5 OT6ZOWMU moderate Biomarker [253]
SOD3 OTIOZQAB moderate Biomarker [254]
SOX17 OT9H4WWE moderate Posttranslational Modification [255]
SPC24 OT1HVYV4 moderate Altered Expression [256]
TBX15 OTAZ9QDX moderate Biomarker [257]
TCF7L1 OTTUTF0O moderate Biomarker [42]
TPR OTUBBA4W moderate Biomarker [42]
ABI3 OTQTDSHP Strong Altered Expression [258]
ABI3BP OTW8DN50 Strong Altered Expression [258]
ADGRG7 OT4IPNZC Strong Altered Expression [259]
AFAP1L2 OTJBI0VN Strong Biomarker [260]
ANKRD36B OT3MW415 Strong Biomarker [261]
ASAH1 OT1DNGXL Strong Altered Expression [262]
ASCL1 OTI4X44G Strong Biomarker [263]
ATF1 OT251CI0 Strong Altered Expression [264]
BUB1B OT8KME51 Strong Altered Expression [53]
C1QL1 OTNQ0G3E Strong Biomarker [265]
CBX1 OT2L4XZX Strong Biomarker [266]
CCDC6 OTXRQDYG Strong Genetic Variation [71]
CCDC80 OTOZSYEM Strong Biomarker [267]
CCNC OTMVK4K4 Strong Biomarker [268]
CD63 OT2UGZA9 Strong Biomarker [269]
CDC23 OTC4O83E Strong Biomarker [270]
CITED2 OT812TV7 Strong Biomarker [271]
COPS6 OTG9AAG0 Strong Altered Expression [272]
COPS8 OTNAD2S4 Strong Genetic Variation [272]
CORO1A OTVAZOHC Strong Altered Expression [273]
CP OTM8JE4Y Strong Biomarker [61]
CREB3L2 OT09MHV0 Strong Genetic Variation [274]
DACT2 OTNLCC0K Strong Biomarker [275]
DAP3 OTNPEZYM Strong Biomarker [276]
DCTN6 OTI8PIN9 Strong Biomarker [277]
DUOX1 OTQ2AEW0 Strong Biomarker [278]
DUSP26 OTI7WIYN Strong Biomarker [279]
EIF2S1 OTM0GDTP Strong Altered Expression [280]
ERC1 OTYBGGNO Strong Biomarker [281]
ERRFI1 OT7VZ2IZ Strong Biomarker [282]
FGF3 OT9PK2SI Strong Biomarker [283]
FOXA1 OTEBY0TD Strong Altered Expression [284]
GADD45G OT8V1J4M Strong Biomarker [285]
GFRA1 OT3WBVYB Strong Genetic Variation [286]
GINS2 OT974IYI Strong Biomarker [271]
GLIS1 OTBDNB26 Strong Genetic Variation [287]
GLIS3 OTBC960E Strong Biomarker [287]
GOLGA5 OTG6HB6U Strong Biomarker [288]
GOT2 OT6XBWN0 Strong Biomarker [289]
GPR151 OT7EACU6 Strong Genetic Variation [76]
GPX3 OT6PK94R Strong Biomarker [290]
GYPA OTABU4YV Strong Genetic Variation [291]
HEMGN OTZPYUOY Strong Biomarker [292]
HNRNPF OTSMBXMF Strong Biomarker [293]
ID3 OTUULW5Z Strong Altered Expression [294]
IFI27 OTI2XGIT Strong Biomarker [277]
INF2 OT8ZM13C Strong Biomarker [295]
INSL3 OT7KUNTE Strong Biomarker [296]
INTS2 OT2N5TCK Strong Biomarker [283]
ITGA3 OTBCH21D Strong Biomarker [297]
ITIH5 OTP46PZM Strong Biomarker [298]
KLLN OTV3FPH0 Strong Genetic Variation [299]
LAMA2 OTFROQWE Strong Biomarker [300]
LARP7 OTLLOZTL Strong Biomarker [301]
LIMD2 OTSIFTD8 Strong Altered Expression [302]
LRPAP1 OT6DVD2Q Strong Biomarker [303]
MADD OTUFYVGG Strong Biomarker [304]
MASTL OTQ7YKK5 Strong Biomarker [305]
MBD1 OTD19VO6 Strong Biomarker [306]
MOS OTNMQPFJ Strong Biomarker [307]
MR1 OTZU3XX7 Strong Altered Expression [308]
MRGPRX3 OTRKCCDS Strong Genetic Variation [76]
MRGPRX4 OTOBHZVA Strong Genetic Variation [76]
MRO OT5U38CP Strong Biomarker [309]
MT1G OTAV1OCR Strong Altered Expression [310]
MT1M OTVT8PLU Strong Altered Expression [311]
MYCL OT1MFQ5U Strong Genetic Variation [312]
NAPSA OT6F8IAL Strong Altered Expression [313]
NDRG2 OT5L6KD7 Strong Altered Expression [314]
NECTIN1 OTTE5ZR6 Strong Altered Expression [315]
NKX2-1 OTCMEJTA Strong Altered Expression [313]
NRCAM OT80HHQ2 Strong Biomarker [316]
NUPR1 OT4FU8C0 Strong Biomarker [317]
PACC1 OTKBS8CC Strong Biomarker [318]
PCLAF OTMVIOUU Strong Altered Expression [319]
PDLIM4 OT23LZYY Strong Biomarker [320]
PDPN OTBUV19I Strong Altered Expression [321]
PEA15 OTKCKTSX Strong Altered Expression [322]
PJA2 OT45TMC4 Strong Altered Expression [323]
PPP1R15A OTYG179K Strong Altered Expression [324]
PPRC1 OT6GB3WR Strong Biomarker [325]
PRDM2 OT8L7CGX Strong Biomarker [326]
PROK1 OT8S7RUG Strong Biomarker [327]
PSMD9 OT6Y5CC3 Strong Biomarker [277]
PTCH2 OTOQ0K9V Strong Biomarker [328]
PTMA OT2W4T1M Strong Biomarker [329]
PTMS OT9PS4Q0 Strong Biomarker [329]
PTPRF OTH5KF2D Strong Biomarker [46]
RAD52 OT0OTDHI Strong Genetic Variation [330]
RAD9A OTJ3AJQU Strong Altered Expression [90]
RAP1GAP OTC31ONQ Strong Biomarker [331]
RAP2A OT0JB5S4 Strong Altered Expression [303]
RASIP1 OTCRY2AN Strong Biomarker [41]
RASSF1 OTEZIPB7 Strong Posttranslational Modification [332]
RASSF10 OTGB7EBG Strong Posttranslational Modification [333]
RASSF2 OT2JHDO4 Strong Biomarker [334]
RASSF7 OT0V4EIZ Strong Genetic Variation [335]
RBBP4 OTG3BT3M Strong Biomarker [336]
RBP1 OTRP1MFC Strong Altered Expression [151]
RCAN1 OT1MVXC7 Strong Altered Expression [337]
RDH10 OTL9FSGF Strong Altered Expression [151]
REV1 OTHIKICX Strong Altered Expression [338]
RGCC OTYJMLWM Strong Biomarker [270]
RITA1 OTUH8IPS Strong Biomarker [318]
RLN1 OTL6QNHG Strong Biomarker [296]
RPL29 OTUFIBJL Strong Altered Expression [339]
RPL36A OT1LYV85 Strong Biomarker [282]
RSPO2 OT3HHXU0 Strong Altered Expression [88]
SAGE1 OT4H6FFA Strong Biomarker [340]
SDHB OTRE1M1T Strong Genetic Variation [116]
SDS OT5WTJ2M Strong Genetic Variation [116]
SEC23B OT2NFSIQ Strong Genetic Variation [341]
SEC62 OTCWEL5F Strong Altered Expression [342]
SGSM3 OTIB1P8A Strong Biomarker [343]
SIRT4 OT5S0J23 Strong Altered Expression [344]
SIRT7 OT5M4OT4 Strong Altered Expression [345]
SLC16A4 OT1YXBKC Strong Biomarker [346]
SLURP1 OT89YD2E Strong Genetic Variation [347]
SMURF1 OT5UIZR8 Strong Biomarker [348]
SPAG9 OT45AHMB Strong Altered Expression [349]
ST13 OTNML6UP Strong Altered Expression [339]
STK3 OTLNSCQD Strong Biomarker [334]
STRN OTLOZL5I Strong Altered Expression [350]
TAF1 OTDYS5G4 Strong Biomarker [289]
TAS2R38 OTX5MM36 Strong Genetic Variation [71]
TERF2IP OT3M5P3G Strong Altered Expression [303]
TFF3 OTJJDRTU Strong Altered Expression [351]
TFG OT2KJENI Strong Altered Expression [259]
TICAM2 OTK7GIJ5 Strong Biomarker [277]
TIMP1 OTOXC51H Strong Biomarker [352]
TJP1 OTBDCUPK Strong Altered Expression [353]
TMED7 OTONO8E6 Strong Biomarker [277]
TMEM184C OTCA2HUW Strong Altered Expression [354]
TOMM20 OT76TPR2 Strong Biomarker [346]
TPM3 OT5RU5G6 Strong Biomarker [98]
TSPAN13 OTCS9BZY Strong Altered Expression [355]
TTF1 OT4K90WD Strong Altered Expression [313]
TTF2 OT5LJOWM Strong Biomarker [356]
AKAP9 OT7Z2YRP Definitive Biomarker [357]
ALX4 OTNS9A29 Definitive Altered Expression [358]
ATF7IP OTU6ZA7F Definitive Biomarker [359]
BMP8A OT1997IN Definitive Altered Expression [360]
C14orf93 OTMHTPMZ Definitive Biomarker [361]
CAVIN2 OTFHHDRU Definitive Biomarker [362]
CRABP1 OTISDG5X Definitive Biomarker [265]
DEUP1 OTXLM86J Definitive Altered Expression [363]
DIO2 OTGPNSLH Definitive Altered Expression [364]
DUOX2 OTU14HCN Definitive Altered Expression [365]
EIF1AX OTWG2LAB Definitive Biomarker [366]
ETFA OTXX61VZ Definitive Biomarker [94]
FBLIM1 OTFHXMON Definitive Altered Expression [367]
GNB3 OTA6HYBA Definitive Genetic Variation [368]
GOPC OTRBGH71 Definitive Altered Expression [367]
HCP5 OTV0YRI8 Definitive Biomarker [369]
HHEX OTLIUVYX Definitive Altered Expression [370]
IGSF1 OT3XD6U2 Definitive Altered Expression [371]
KIF22 OTY6X6BL Definitive Biomarker [372]
KLHL14 OTYOS55H Definitive Biomarker [373]
LRIG1 OTY5HZN5 Definitive Genetic Variation [374]
MIEF1 OTFSP3FS Definitive Biomarker [139]
NOC2L OTNT7R33 Definitive Biomarker [375]
NOVA1 OT6A9KHY Definitive Biomarker [376]
OBP2A OTBIJ5TI Definitive Biomarker [372]
PARP4 OTXBK59G Definitive Biomarker [377]
PATZ1 OT0X9WGR Definitive Biomarker [378]
PKHD1L1 OTREFCAA Definitive Biomarker [379]
PSME3 OTSTC4YY Definitive Biomarker [380]
RAP1B OTHEIIMM Definitive Altered Expression [381]
SHOC2 OTUNQ2CT Definitive Biomarker [382]
SOSTDC1 OTAKDNSM Definitive Altered Expression [193]
SPANXA1 OTMK3QIS Definitive Biomarker [383]
TFAP2B OTR1T8E9 Definitive Altered Expression [384]
TFCP2L1 OT7QIJ0X Definitive Biomarker [385]
TRIP13 OTFM3TI9 Definitive Altered Expression [386]
------------------------------------------------------------------------------------
⏷ Show the Full List of 300 DOT(s)

References

1 Ponatinib FDA Label
2 Pathologic significance of a novel oncoprotein in thyroid cancer progression.Head Neck. 2017 Dec;39(12):2459-2469. doi: 10.1002/hed.24913. Epub 2017 Oct 11.
3 Function of HSP90 and p23 in the telomerase complex of thyroid tumors.Pathol Res Pract. 2003;199(9):573-9. doi: 10.1078/0344-0338-00464.
4 nc886, a non-coding RNA and suppressor of PKR, exerts an oncogenic function in thyroid cancer.Oncotarget. 2016 Nov 15;7(46):75000-75012. doi: 10.18632/oncotarget.11852.
5 Autotaxin is an inflammatory mediator and therapeutic target in thyroid cancer.Endocr Relat Cancer. 2015 Aug;22(4):593-607. doi: 10.1530/ERC-15-0045. Epub 2015 Jun 2.
6 Upregulation of Tyrosine Kinase FYN in Human Thyroid Carcinoma: Role in Modulating Tumor Cell Proliferation, Invasion, and Migration.Cancer Biother Radiopharm. 2017 Nov;32(9):320-326. doi: 10.1089/cbr.2017.2218.
7 Inhibitory Effects of Antagonists of Growth Hormone-Releasing Hormone (GHRH) in Thyroid Cancer.Horm Cancer. 2017 Dec;8(5-6):314-324. doi: 10.1007/s12672-017-0307-4. Epub 2017 Sep 18.
8 Ginsenoside improves papillary thyroid cancer cell malignancies partially through upregulating connexin 31.Kaohsiung J Med Sci. 2018 Jun;34(6):313-320. doi: 10.1016/j.kjms.2017.12.006. Epub 2018 Jan 17.
9 Mitochondrial metabolism is inhibited by the HIF1-MYC-PGC-1 axis in BRAF V600E thyroid cancer.FEBS J. 2019 Apr;286(7):1420-1436. doi: 10.1111/febs.14786. Epub 2019 Mar 5.
10 Genetic Alterations in Hungarian Patients with Papillary Thyroid Cancer.Pathol Oncol Res. 2016 Jan;22(1):27-33. doi: 10.1007/s12253-015-9969-9. Epub 2015 Aug 11.
11 KSR1 is coordinately regulated with Notch signaling and oxidative phosphorylation in thyroid cancer.J Mol Endocrinol. 2015 Apr;54(2):115-24. doi: 10.1530/JME-14-0270. Epub 2015 Jan 21.
12 Silencing of LIM and SH3 Protein 1 (LASP-1) Inhibits Thyroid Cancer Cell Proliferation and Invasion.Oncol Res. 2017 Jul 5;25(6):879-886. doi: 10.3727/096504016X14785415155643. Epub 2016 Nov 17.
13 Synergistic effects of BET and MEK inhibitors promote regression of anaplastic thyroid tumors.Oncotarget. 2018 Oct 23;9(83):35408-35421. doi: 10.18632/oncotarget.26253. eCollection 2018 Oct 23.
14 Functional analysis of a novel, thyroglobulin-embedded microRNA gene deregulated in papillary thyroid carcinoma.Sci Rep. 2017 Aug 30;7(1):9942. doi: 10.1038/s41598-017-10318-w.
15 Promotion of tumor progression and cancer stemness by MUC15 in thyroid cancer via the GPCR/ERK and integrin-FAK signaling pathways.Oncogenesis. 2018 Nov 12;7(11):85. doi: 10.1038/s41389-018-0094-y.
16 TERT, BRAF, and NRAS in Primary Thyroid Cancer and Metastatic Disease.J Clin Endocrinol Metab. 2017 Jun 1;102(6):1898-1907. doi: 10.1210/jc.2016-2785.
17 MicroRNA-146a targets PRKCE to modulate papillary thyroid tumor development.Int J Cancer. 2014 Jan 15;134(2):257-67. doi: 10.1002/ijc.28141. Epub 2013 Sep 18.
18 Expression of the cAMP binding protein EPAC1 in thyroid tumors and growth regulation of thyroid cells and thyroid carcinoma cells by EPAC proteins.Horm Metab Res. 2015 Mar;47(3):200-8. doi: 10.1055/s-0034-1390484. Epub 2014 Nov 5.
19 Sphingosine 1-phosphate attenuates MMP2 and MMP9 in human anaplastic thyroid cancer C643 cells: Importance of S1P2.PLoS One. 2018 May 7;13(5):e0196992. doi: 10.1371/journal.pone.0196992. eCollection 2018.
20 New Treatment of Medullary and Papillary Human Thyroid Cancer: Biological Effects of Hyaluronic Acid Hydrogel Loaded With Quercetin Alone or in Combination to an Inhibitor of Aurora Kinase.J Cell Physiol. 2016 Aug;231(8):1784-95. doi: 10.1002/jcp.25283. Epub 2016 Feb 2.
21 LncRNA-SLC6A9-5:2: A potent sensitizer in 131I-resistant papillary thyroid carcinoma with PARP-1 induction.Oncotarget. 2017 Apr 4;8(14):22954-22967. doi: 10.18632/oncotarget.14578.
22 Stomatin-like protein 2 overexpression in papillary thyroid carcinoma is significantly associated with high-risk clinicopathological parameters and BRAFV600E mutation.APMIS. 2016 Apr;124(4):271-7. doi: 10.1111/apm.12505. Epub 2016 Jan 11.
23 Long noncoding RNA H19 competitively binds miR-17-5p to regulate YES1 expression in thyroid cancer.FEBS J. 2016 Jun;283(12):2326-39. doi: 10.1111/febs.13741. Epub 2016 May 12.
24 The AMPK-activator AICAR in thyroid cancer: effects on CXCL8 secretion and on CXCL8-induced neoplastic cell migration.J Endocrinol Invest. 2018 Nov;41(11):1275-1282. doi: 10.1007/s40618-018-0862-8. Epub 2018 Mar 15.
25 Neurotrophin Receptors TrkA, p75(NTR), and Sortilin Are Increased and Targetable in Thyroid Cancer.Am J Pathol. 2018 Jan;188(1):229-241. doi: 10.1016/j.ajpath.2017.09.008. Epub 2017 Oct 14.
26 RAF-1 promotes survival of thyroid cancer cells harboring RET/PTC1 rearrangement independently of ERK activation.Mol Cell Endocrinol. 2015 Nov 5;415:64-75. doi: 10.1016/j.mce.2015.08.006. Epub 2015 Aug 8.
27 DARC (Duffy) and BCAM (Lutheran) reduced expression in thyroid cancer.Blood Cells Mol Dis. 2013 Mar;50(3):161-5. doi: 10.1016/j.bcmd.2012.10.009. Epub 2012 Nov 17.
28 BTG1 expression in thyroid carcinoma: diagnostic indicator and prognostic marker.Int J Oncol. 2014 Oct;45(4):1574-82. doi: 10.3892/ijo.2014.2543. Epub 2014 Jul 11.
29 Down-regulation of SOSTDC1 promotes thyroid cancer cell proliferation via regulating cyclin A2 and cyclin E2.Oncotarget. 2015 Oct 13;6(31):31780-91. doi: 10.18632/oncotarget.5566.
30 Immunohistochemical cellular distribution of proteins related to M phase regulation in early proliferative lesions induced by tumor promotion in rat two-stage carcinogenesis models.Exp Toxicol Pathol. 2014 Jan;66(1):1-11. doi: 10.1016/j.etp.2013.07.001. Epub 2013 Jul 23.
31 Contactin 1 as a potential biomarker promotes cell proliferation and invasion in thyroid cancer.Int J Clin Exp Pathol. 2015 Oct 1;8(10):12473-81. eCollection 2015.
32 Influence of CYP3A4/5 and ABC transporter polymorphisms on lenvatinib plasma trough concentrations in Japanese patients with thyroid cancer. Sci Rep. 2019 Apr 1;9(1):5404.
33 Erythropoietin in thyroid cancer.J Endocrinol Invest. 2006 Apr;29(4):320-9. doi: 10.1007/BF03344103.
34 A phase II trial of doxorubicin and interferon alpha 2b in advanced, non-medullary thyroid cancer.Invest New Drugs. 2008 Apr;26(2):183-8. doi: 10.1007/s10637-007-9091-2. Epub 2007 Oct 2.
35 Interplay between thyroid cancer cells and macrophages: effects on IL-32 mediated cell death and thyroid cancer cell migration.Cell Oncol (Dordr). 2019 Oct;42(5):691-703. doi: 10.1007/s13402-019-00457-9. Epub 2019 Jun 14.
36 MiR-20a is upregulated in anaplastic thyroid cancer and targets LIMK1.PLoS One. 2014 May 23;9(5):e96103. doi: 10.1371/journal.pone.0096103. eCollection 2014.
37 SIN1, a critical component of the mTOR-Rictor complex, is overexpressed and associated with AKT activation in medullary and aggressive papillary thyroid carcinomas.Surgery. 2014 Dec;156(6):1542-8; discussion 1548-9. doi: 10.1016/j.surg.2014.08.095. Epub 2014 Nov 11.
38 Evaluation of thyroid cancer in Chinese females with breast cancer by vascular endothelial growth factor (VEGF), microvessel density, and contrast-enhanced ultrasound (CEUS).Tumour Biol. 2014 Jul;35(7):6521-9. doi: 10.1007/s13277-014-1868-2. Epub 2014 Apr 1.
39 Identification of thyroid carcinoma related genes with mRMR and shortest path approaches.PLoS One. 2014 Apr 9;9(4):e94022. doi: 10.1371/journal.pone.0094022. eCollection 2014.
40 Prostaglandin synthases influence thyroid follicular cell proliferation but not carcinogenesis in rats initiated with N-bis(2-hydroxypropyl)nitrosamine.Toxicol Sci. 2012 Jun;127(2):339-47. doi: 10.1093/toxsci/kfs097. Epub 2012 Mar 2.
41 RAIN Is a Novel Enhancer-Associated lncRNA That Controls RUNX2 Expression and Promotes Breast and Thyroid Cancer.Mol Cancer Res. 2020 Jan;18(1):140-152. doi: 10.1158/1541-7786.MCR-19-0564. Epub 2019 Oct 17.
42 Cancer-related genes transcriptionally induced by the fungicide penconazole.Toxicol In Vitro. 2014 Feb;28(1):125-30. doi: 10.1016/j.tiv.2013.06.006. Epub 2013 Jun 27.
43 Cowden syndrome-associated germline succinate dehydrogenase complex subunit D (SDHD) variants cause PTEN-mediated down-regulation of autophagy in thyroid cancer cells.Hum Mol Genet. 2017 Apr 1;26(7):1365-1375. doi: 10.1093/hmg/ddx037.
44 Inhibition of microRNA-875-5p promotes radioiodine uptake in poorly differentiated thyroid carcinoma cells by upregulating sodium-iodide symporter.J Endocrinol Invest. 2020 Apr;43(4):439-450. doi: 10.1007/s40618-019-01125-3. Epub 2019 Oct 14.
45 Is transketolase like 1 a target for the treatment of differentiated thyroid carcinoma? A study on thyroid cancer cell lines.Invest New Drugs. 2009 Aug;27(4):297-303. doi: 10.1007/s10637-008-9174-8. Epub 2008 Sep 20.
46 Evaluation of preclinical efficacy of everolimus and pasireotide in thyroid cancer cell lines and xenograft models.PLoS One. 2019 Feb 26;14(2):e0206309. doi: 10.1371/journal.pone.0206309. eCollection 2019.
47 Transient Receptor Potential Canonical 1 (TRPC1) Channels as Regulators of Sphingolipid and VEGF Receptor Expression: IMPLICATIONS FOR THYROID CANCER CELL MIGRATION AND PROLIFERATION.J Biol Chem. 2015 Jun 26;290(26):16116-31. doi: 10.1074/jbc.M115.643668. Epub 2015 May 13.
48 miR-217 inhibits proliferation, migration, and invasion via targeting AKT3 in thyroid cancer.Biomed Pharmacother. 2017 Nov;95:1718-1724. doi: 10.1016/j.biopha.2017.09.074. Epub 2017 Oct 6.
49 Characterization of thyroid cancer driven by known and novel ALK fusions.Endocr Relat Cancer. 2019 Nov;26(11):803-814. doi: 10.1530/ERC-19-0325.
50 Allelotype of human thyroid tumors: loss of chromosome 11q13 sequences in follicular neoplasms.Mol Endocrinol. 1991 Dec;5(12):1873-9. doi: 10.1210/mend-5-12-1873.
51 Arginase 2 and nitric oxide synthase: Pathways associated with the pathogenesis of thyroid tumors.Free Radic Biol Med. 2010 Sep 15;49(6):997-1007. doi: 10.1016/j.freeradbiomed.2010.06.006. Epub 2010 Jun 11.
52 Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer. Biochem Biophys Res Commun. 2016 Jan 15;469(3):679-85. doi: 10.1016/j.bbrc.2015.12.008. Epub 2015 Dec 18.
53 Overexpression of the mitotic spindle assembly checkpoint genes hBUB1, hBUBR1 and hMAD2 in thyroid carcinomas with aggressive nature.Anticancer Res. 2008 Jan-Feb;28(1A):139-44.
54 Molecular markers for discrimination of benign and malignant follicular thyroid tumors.Tumour Biol. 2006;27(4):211-20. doi: 10.1159/000093056. Epub 2006 May 2.
55 The loss of the CBX7 gene expression represents an adverse prognostic marker for survival of colon carcinoma patients.Eur J Cancer. 2010 Aug;46(12):2304-13. doi: 10.1016/j.ejca.2010.05.011. Epub 2010 Jun 9.
56 The cholecystokinin2-receptor mediates calcitonin secretion, gene expression, and proliferation in the human medullary thyroid carcinoma cell line, TT.Regul Pept. 2004 Apr 15;118(1-2):111-7. doi: 10.1016/j.regpep.2003.11.007.
57 The multifaceted anti-cancer effects of BRAF-inhibitors.Oncotarget. 2019 Nov 12;10(61):6623-6640. doi: 10.18632/oncotarget.27304. eCollection 2019 Nov 12.
58 Long non-coding RNA NR2F1-AS1 promoted proliferation and migration yet suppressed apoptosis of thyroid cancer cells through regulating miRNA-338-3p/CCND1 axis.J Cell Mol Med. 2019 Sep;23(9):5907-5919. doi: 10.1111/jcmm.14386. Epub 2019 Jul 14.
59 Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle's cell, and poorly differentiated human thyroid carcinoma.Cancer Res. 1998 May 15;58(10):2063-6.
60 Cadherin-6 promotes EMT and cancer metastasis by restraining autophagy.Oncogene. 2017 Feb 2;36(5):667-677. doi: 10.1038/onc.2016.237. Epub 2016 Jul 4.
61 Cellular distributions of molecules with altered expression specific to thyroid proliferative lesions developing in a rat thyroid carcinogenesis model.Cancer Sci. 2009 Apr;100(4):617-25. doi: 10.1111/j.1349-7006.2009.01094.x. Epub 2009 Feb 25.
62 Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser on STAT3 in prostate cancer cells.Am J Physiol Endocrinol Metab. 2013 Oct 15;305(8):E975-86. doi: 10.1152/ajpendo.00615.2012. Epub 2013 Aug 13.
63 P18 is a tumor suppressor gene involved in human medullary thyroid carcinoma and pheochromocytoma development.Int J Cancer. 2009 Jan 15;124(2):339-45. doi: 10.1002/ijc.23977.
64 Induction of sodium iodide symporter gene and molecular characterisation of HNF3 beta/FoxA2, TTF-1 and C/EBP beta in thyroid carcinoma cells.Br J Cancer. 2008 Sep 2;99(5):781-8. doi: 10.1038/sj.bjc.6604544.
65 Identification of Key Genes in Thyroid Cancer Microenvironment.Med Sci Monit. 2019 Dec 16;25:9602-9608. doi: 10.12659/MSM.918519.
66 Multiple anti-tumor effects of Reparixin on thyroid cancer.Oncotarget. 2017 May 30;8(22):35946-35961. doi: 10.18632/oncotarget.16412.
67 The expression and role of serum response factor in papillary carcinoma of the thyroid.Int J Oncol. 2009 Jul;35(1):49-55.
68 CYP24A1 depletion facilitates the antitumor effect of vitamin D3 on thyroid cancer cells.Exp Ther Med. 2018 Oct;16(4):2821-2830. doi: 10.3892/etm.2018.6536. Epub 2018 Jul 27.
69 Coexpression of EpCAM, CD44 variant isoforms and claudin-7 in anaplastic thyroid carcinoma.PLoS One. 2014 Apr 11;9(4):e94487. doi: 10.1371/journal.pone.0094487. eCollection 2014.
70 Clinical utility of EZH1 mutations in the diagnosis of follicular-patterned thyroid tumors.Hum Pathol. 2018 Nov;81:9-17. doi: 10.1016/j.humpath.2018.04.018. Epub 2018 May 1.
71 Selected single-nucleotide polymorphisms in FOXE1, SERPINA5, FTO, EVPL, TICAM1 and SCARB1 are associated with papillary and follicular thyroid cancer risk: replication study in a German population.Carcinogenesis. 2016 Jul;37(7):677-684. doi: 10.1093/carcin/bgw047. Epub 2016 Apr 28.
72 Alteration in the serum concentrations of FGF19, FGFR4 and Klotho in patients with thyroid cancer.Cytokine. 2018 May;105:32-36. doi: 10.1016/j.cyto.2018.02.013. Epub 2018 Feb 10.
73 Neovascular PSMA expression is a common feature in malignant neoplasms of the thyroid.Oncotarget. 2018 Jan 4;9(11):9867-9874. doi: 10.18632/oncotarget.23984. eCollection 2018 Feb 9.
74 RET is a potential tumor suppressor gene in colorectal cancer.Oncogene. 2013 Apr 18;32(16):2037-47. doi: 10.1038/onc.2012.225. Epub 2012 Jul 2.
75 GPER1 in the thyroid: A systematic review.Life Sci. 2020 Jan 15;241:117112. doi: 10.1016/j.lfs.2019.117112. Epub 2019 Nov 29.
76 GPCR-mediated PI3K pathway mutations in pediatric and adult thyroid cancer.Oncotarget. 2019 Jun 25;10(41):4107-4124. doi: 10.18632/oncotarget.26993. eCollection 2019 Jun 25.
77 Development of Inflammatory Immune Response-Related Drugs Based on G Protein-Coupled Receptor Kinase 2.Cell Physiol Biochem. 2018;51(2):729-745. doi: 10.1159/000495329. Epub 2018 Nov 21.
78 Decreased expression of haemoglobin beta (HBB) gene in anaplastic thyroid cancer and recovery of its expression inhibits cell growth.Br J Cancer. 2005 Jun 20;92(12):2216-24. doi: 10.1038/sj.bjc.6602634.
79 Sporadic cardiac myxomas and tumors from patients with Carney complex are not associated with activating mutations of the Gs alpha gene.Hum Genet. 1996 Aug;98(2):185-8. doi: 10.1007/s004390050187.
80 TGF-1 induces HMGA1 expression: The role of HMGA1 in thyroid cancer proliferation and invasion.Int J Oncol. 2017 May;50(5):1567-1578. doi: 10.3892/ijo.2017.3958. Epub 2017 Apr 7.
81 HMGA2 Gene Expression in Fine-needle Aspiration Samples of Thyroid Nodules as a Marker for Preoperative Diagnosis of Thyroid Cancer.Appl Immunohistochem Mol Morphol. 2019 Jul;27(6):471-476. doi: 10.1097/PAI.0000000000000637.
82 Genetic polymorphisms in IL1R1 and IL1R2 are associated with susceptibility to thyroid cancer in the Chinese Han population.J Gene Med. 2019 Jun;21(6):e3093. doi: 10.1002/jgm.3093. Epub 2019 May 27.
83 ITCH is a putative target for a novel 20q11.22 amplification detected in anaplastic thyroid carcinoma cells by array-based comparative genomic hybridization.Cancer Sci. 2008 Oct;99(10):1940-9. doi: 10.1111/j.1349-7006.2008.00900.x.
84 Candidate target genes for loss of heterozygosity on human chromosome 17q21.Br J Cancer. 2004 Jun 14;90(12):2384-9. doi: 10.1038/sj.bjc.6601848.
85 Association between Circulating Fibroblast Growth Factor 21 and Aggressiveness in Thyroid Cancer.Cancers (Basel). 2019 Aug 12;11(8):1154. doi: 10.3390/cancers11081154.
86 BRAF(V600E)-induced KRT19 expression in thyroid cancer promotes lymph node metastasis via EMT.Oncol Lett. 2019 Jul;18(1):927-935. doi: 10.3892/ol.2019.10360. Epub 2019 May 14.
87 Combined use of galectin-3 and thyroid peroxidase improves the differential diagnosis of thyroid tumors.Neoplasma. 2020 Jan;67(1):164-170. doi: 10.4149/neo_2019_190128N86. Epub 2019 Nov 18.
88 Upregulation of RSPO2-GPR48/LGR4 signaling in papillary thyroid carcinoma contributes to tumor progression.Oncotarget. 2017 Nov 25;8(70):114980-114994. doi: 10.18632/oncotarget.22692. eCollection 2017 Dec 29.
89 Lysyl Oxidase Is a Key Player in BRAF/MAPK Pathway-Driven Thyroid Cancer Aggressiveness.Thyroid. 2019 Jan;29(1):79-92. doi: 10.1089/thy.2018.0424. Epub 2018 Dec 28.
90 Diagnostic and prognostic value of cell-cycle regulatory genes in malignant thyroid neoplasms.World J Surg. 2006 May;30(5):767-74. doi: 10.1007/s00268-005-0308-2.
91 Using Ion Torrent sequencing to study genetic mutation profiles of fatal thyroid cancers.J Formos Med Assoc. 2018 Jun;117(6):488-496. doi: 10.1016/j.jfma.2017.05.007. Epub 2017 Jul 27.
92 Unusual tumors associated with the hereditary nonpolyposis colorectal cancer syndrome.Mod Pathol. 2004 Aug;17(8):981-9. doi: 10.1038/modpathol.3800150.
93 MicroRNA-625-3p promotes the proliferation, migration and invasion of thyroid cancer cells by up-regulating astrocyte elevated gene 1.Biomed Pharmacother. 2018 Jun;102:203-211. doi: 10.1016/j.biopha.2018.03.043. Epub 2018 Mar 22.
94 Safety Profiles and Pharmacovigilance Considerations for Recently Patented Anticancer Drugs: Advanced Thyroid Cancer.Recent Pat Anticancer Drug Discov. 2019;14(3):226-241. doi: 10.2174/1574892814666190726143011.
95 Plasmid-based Stat3-specific siRNA and GRIM-19 inhibit the growth of thyroid cancer cells in vitro and in vivo.Oncol Rep. 2014 Aug;32(2):573-80. doi: 10.3892/or.2014.3233. Epub 2014 Jun 5.
96 Expression of a potential metastasis suppressor gene (nm23) in thyroid neoplasms.World J Surg. 1993 Sep-Oct;17(5):615-20; discussion 620-1. doi: 10.1007/BF01659123.
97 Thyroid cancer susceptibility and THRA1 and BAT-40 repeats polymorphisms.Cancer Epidemiol Biomarkers Prev. 2005 Mar;14(3):638-42. doi: 10.1158/1055-9965.EPI-04-0424.
98 Targetable gene fusions identified in radioactive iodine refractory advanced thyroid carcinoma.Eur J Endocrinol. 2019 Apr 1;180(4):235-241. doi: 10.1530/EJE-18-0653.
99 MAPK- and AKT-activated thyroid cancers are sensitive to group I PAK inhibition.Endocr Relat Cancer. 2019 Aug;26(8):699-712. doi: 10.1530/ERC-19-0188.
100 Does the 3-gene diagnostic assay accurately distinguish benign from malignant thyroid neoplasms?.Cancer. 2008 Sep 1;113(5):930-5. doi: 10.1002/cncr.23703.
101 Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer.Oncotarget. 2017 Jan 24;8(4):5761-5773. doi: 10.18632/oncotarget.14050.
102 Absence of EIF1AX, PPM1D, and CHEK2 mutations reported in Thyroid Cancer Genome Atlas (TCGA) in a large series of thyroid cancer.Endocrine. 2019 Jan;63(1):94-100. doi: 10.1007/s12020-018-1762-6. Epub 2018 Sep 29.
103 Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism.J Exp Clin Cancer Res. 2019 May 21;38(1):208. doi: 10.1186/s13046-019-1198-8.
104 Modulation of parathyroid hormone-related protein levels (PTHrP) in anaplastic thyroid cancer.Surgery. 2005 Sep;138(3):456-63. doi: 10.1016/j.surg.2005.06.033.
105 The tyrosine phosphatase PTPRJ/DEP-1 genotype affects thyroid carcinogenesis.Oncogene. 2004 Nov 4;23(52):8432-8. doi: 10.1038/sj.onc.1207766.
106 Family of microRNA-146 Regulates RAR in Papillary Thyroid Carcinoma.PLoS One. 2016 Mar 24;11(3):e0151968. doi: 10.1371/journal.pone.0151968. eCollection 2016.
107 Genome-wide gene expression profiles of thyroid carcinoma: Identification of molecular targets for treatment of thyroid carcinoma.Oncol Rep. 2008 Jul;20(1):105-21.
108 Tc-99m HYNIC-TOC scintigraphy in dedifferentiated thyroid cancer.BMJ Case Rep. 2019 Apr 1;12(4):e227910. doi: 10.1136/bcr-2018-227910.
109 Reactivation of suppressed RhoB is a critical step for the inhibition of anaplastic thyroid cancer growth.Cancer Res. 2009 Feb 15;69(4):1536-44. doi: 10.1158/0008-5472.CAN-08-3718. Epub 2009 Feb 10.
110 Retinoid X receptor-gamma and peroxisome proliferator-activated receptor-gamma expression predicts thyroid carcinoma cell response to retinoid and thiazolidinedione treatment.Mol Cancer Ther. 2004 Aug;3(8):1011-20.
111 Inverse correlation between heparan sulfate composition and heparanase-1 gene expression in thyroid papillary carcinomas: a potential role in tumor metastasis.Clin Cancer Res. 2003 Dec 1;9(16 Pt 1):5968-79.
112 Disruption of cell-type-specific methylation at the Maspin gene promoter is frequently involved in undifferentiated thyroid cancers.Oncogene. 2004 Feb 5;23(5):1117-24. doi: 10.1038/sj.onc.1207211.
113 CD133 promotes the self-renewal capacity of thyroid cancer stem cells through activation of glutamate aspartate transporter SLC1A3 expression.Biochem Biophys Res Commun. 2019 Mar 26;511(1):87-91. doi: 10.1016/j.bbrc.2019.02.023. Epub 2019 Feb 13.
114 Circulating cell-free DNA, SLC5A8 and SLC26A4 hypermethylation, BRAF(V600E): A non-invasive tool panel for early detection of thyroid cancer. Biomed Pharmacother. 2013 Oct;67(8):723-30.
115 Expression of OATP family members in hormone-related cancers: potential markers of progression.PLoS One. 2011;6(5):e20372. doi: 10.1371/journal.pone.0020372. Epub 2011 May 19.
116 Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet. 2012 Jan 15;21(2):300-10. doi: 10.1093/hmg/ddr459. Epub 2011 Oct 6.
117 Somatostatin receptor subtype expression in human thyroid and thyroid carcinoma cell lines.J Clin Endocrinol Metab. 1997 Jun;82(6):1857-62. doi: 10.1210/jcem.82.6.4013.
118 Klotho inhibits human follicular thyroid cancer cell growth and promotes apoptosis through regulation of the expression of stanniocalcin-1.Oncol Rep. 2016 Jan;35(1):552-8. doi: 10.3892/or.2015.4358. Epub 2015 Oct 29.
119 Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer.Genes Chromosomes Cancer. 2002 Sep;35(1):74-80. doi: 10.1002/gcc.10098.
120 B-Raf(V600E) and thrombospondin-1 promote thyroid cancer progression.Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10649-54. doi: 10.1073/pnas.1004934107. Epub 2010 May 24.
121 Thyroid Hormone Receptor- (TR) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer.Endocrinology. 2016 Aug;157(8):3278-92. doi: 10.1210/en.2015-2046. Epub 2016 Jun 2.
122 Tie-1 tyrosine kinase expression in human thyroid neoplasms.Histopathology. 2004 Apr;44(4):318-22. doi: 10.1111/j.1365-2559.2003.01805.x.
123 Tumor Susceptibility Gene 101 Mediates Anoikis Resistance of Metastatic Thyroid Cancer Cells.Cancer Genomics Proteomics. 2018 Nov-Dec;15(6):473-483. doi: 10.21873/cgp.20106.
124 TXNIP overexpression suppresses proliferation and induces apoptosis in SMMC7221 cells through ROS generation and MAPK pathway activation.Oncol Rep. 2017 Jun;37(6):3369-3376. doi: 10.3892/or.2017.5577. Epub 2017 Apr 18.
125 The proteomic 2D-DIGE approach reveals the protein voltage-dependent anion channel 2 as a potential therapeutic target in epithelial thyroid tumours.Mol Cell Endocrinol. 2015 Mar 15;404:37-45. doi: 10.1016/j.mce.2015.01.021. Epub 2015 Jan 21.
126 Role of chemokine receptors in thyroid cancer and immunotherapy.Endocr Relat Cancer. 2019 Aug;26(8):R465-R478. doi: 10.1530/ERC-19-0163.
127 The HuR CMLD-2 inhibitor exhibits antitumor effects via MAD2 downregulation in thyroid cancer cells.Sci Rep. 2019 May 14;9(1):7374. doi: 10.1038/s41598-019-43894-0.
128 Growth-associated protein 43 promotes thyroid cancer cell lines progression via epithelial-mesenchymal transition.J Cell Mol Med. 2019 Dec;23(12):7974-7984. doi: 10.1111/jcmm.14460. Epub 2019 Sep 30.
129 Id1 gene expression and regulation in human thyroid tissue.Thyroid. 2005 Jun;15(6):522-30. doi: 10.1089/thy.2005.15.522.
130 IGFBP7 inhibits cell proliferation by suppressing AKT activity and cell cycle progression in thyroid carcinoma.Cell Biosci. 2019 Jun 6;9:44. doi: 10.1186/s13578-019-0310-2. eCollection 2019.
131 IL13RA2 Is Differentially Regulated in Papillary Thyroid Carcinoma vs Follicular Thyroid Carcinoma.J Clin Endocrinol Metab. 2019 Nov 1;104(11):5573-5584. doi: 10.1210/jc.2019-00040.
132 MMP-11 promotes papillary thyroid cell proliferation and invasion via the NF-B pathway.J Cell Biochem. 2019 Feb;120(2):1860-1868. doi: 10.1002/jcb.27500. Epub 2018 Sep 1.
133 Association of the T1799A BRAF mutation with tumor extrathyroidal invasion, higher peripheral platelet counts, and over-expression of platelet-derived growth factor-B in papillary thyroid cancer.Endocr Relat Cancer. 2008 Mar;15(1):183-90. doi: 10.1677/ERC-07-0182.
134 Activation of AMPK promotes thyroid cancer cell migration through its interaction with PKM2 and -catenin.Life Sci. 2019 Dec 15;239:116877. doi: 10.1016/j.lfs.2019.116877. Epub 2019 Oct 25.
135 TGF induces epithelial-mesenchymal transition of thyroid cancer cells by both the BRAF/MEK/ERK and Src/FAK pathways.Mol Carcinog. 2016 Nov;55(11):1639-1654. doi: 10.1002/mc.22415. Epub 2015 Sep 21.
136 The role of Slit2 as a tumor suppressor in thyroid cancer.Mol Cell Endocrinol. 2019 Mar 1;483:87-96. doi: 10.1016/j.mce.2019.01.010. Epub 2019 Jan 12.
137 Somatostatin receptor subtype expression in human thyroid tumours.Horm Metab Res. 2010 Apr;42(4):237-40. doi: 10.1055/s-0029-1243636. Epub 2010 Jan 21.
138 Evidence for Somatostatin receptor 2 in thyroid tissue.Regul Pept. 2007 Jan 10;138(1):32-9. doi: 10.1016/j.regpep.2006.08.005. Epub 2006 Sep 20.
139 Mst1 overexpression combined with Yap knockdown augments thyroid carcinoma apoptosis via promoting MIEF1-related mitochondrial fission and activating the JNK pathway.Cancer Cell Int. 2019 May 22;19:143. doi: 10.1186/s12935-019-0860-8. eCollection 2019.
140 The Potential Diagnostic Utility of TROP-2 in Thyroid Neoplasms.Appl Immunohistochem Mol Morphol. 2017 Sep;25(8):525-533. doi: 10.1097/PAI.0000000000000332.
141 Effect of low-dose tungsten on human thyroid stem/precursor cells and their progeny.Endocr Relat Cancer. 2019 Aug;26(8):713-725. doi: 10.1530/ERC-19-0176.
142 Differential regulation of monocarboxylate transporter 8 expression in thyroid cancer and hyperthyroidism.Eur J Endocrinol. 2017 Sep;177(3):243-250. doi: 10.1530/EJE-17-0279. Epub 2017 Jun 2.
143 Expression of hypoxia-related glucose transporters GLUT1 and GLUT3 in benign, malignant and non-neoplastic thyroid lesions.Mol Med Rep. 2012 Sep;6(3):601-6. doi: 10.3892/mmr.2012.969. Epub 2012 Jun 27.
144 RAGE Mediates the Pro-Migratory Response of Extracellular S100A4 in Human Thyroid Cancer Cells.Thyroid. 2015 May;25(5):514-27. doi: 10.1089/thy.2014.0257. Epub 2015 Apr 3.
145 Gene expression profiling of papillary thyroid carcinoma identifies transcripts correlated with BRAF mutational status and lymph node metastasis.Clin Cancer Res. 2008 Aug 1;14(15):4735-42. doi: 10.1158/1078-0432.CCR-07-4372.
146 Effect of perioperative treatment with a hypoxia-inducible factor-1-alpha inhibitor in an orthotopic surgical mouse model of thyroid cancer.Anticancer Res. 2015 Apr;35(4):2049-54.
147 Circulating tumour DNA is a potential biomarker for disease progression and response to targeted therapy in advanced thyroid cancer.Eur J Cancer. 2018 Nov;103:165-175. doi: 10.1016/j.ejca.2018.08.013. Epub 2018 Sep 22.
148 Evaluation of circulating thyroid-specific transcripts as markers of thyroid cancer relapse.Int J Cancer. 2004 Jul 20;110(6):914-20. doi: 10.1002/ijc.20182.
149 Indomethacin, a cox inhibitor, enhances 15-PGDH and decreases human tumoral C cells proliferation.Prostaglandins Other Lipid Mediat. 2001 May;65(1):11-20. doi: 10.1016/s0090-6980(01)00116-2.
150 Uridine phosphorylase 1 associates to biological and clinical significance in thyroid carcinoma cell lines.J Cell Mol Med. 2019 Nov;23(11):7438-7448. doi: 10.1111/jcmm.14612. Epub 2019 Sep 9.
151 Retinoid acid receptor expression is helpful to distinguish between adenoma and well-differentiated carcinoma in the thyroid.Virchows Arch. 2013 Jun;462(6):619-32. doi: 10.1007/s00428-013-1419-z. Epub 2013 May 4.
152 Gene Expression of CYP1A1 and its Possible Clinical Application in Thyroid Cancer Cases.Asian Pac J Cancer Prev. 2016;17(7):3477-82.
153 Haplotype analysis of XRCC1 gene polymorphisms and the risk of thyroid carcinoma.J BUON. 2018 Jan-Feb;23(1):234-243.
154 Somatic mutation and germline variants of MINPP1, a phosphatase gene located in proximity to PTEN on 10q23.3, in follicular thyroid carcinomas.J Clin Endocrinol Metab. 2001 Apr;86(4):1801-5. doi: 10.1210/jcem.86.4.7419.
155 Up-Regulated AKR1C2 is correlated with favorable prognosis in thyroid carcinoma.J Cancer. 2019 Jun 9;10(15):3543-3552. doi: 10.7150/jca.28364. eCollection 2019.
156 Histone deacetylase inhibitor depsipeptide represses nicotinamide N-methyltransferase and hepatocyte nuclear factor-1beta gene expression in human papillary thyroid cancer cells.Thyroid. 2006 Feb;16(2):151-60. doi: 10.1089/thy.2006.16.151.
157 Afamin promotes glucose metabolism in papillary thyroid carcinoma.Mol Cell Endocrinol. 2016 Oct 15;434:108-15. doi: 10.1016/j.mce.2016.06.013. Epub 2016 Jun 18.
158 Effect of alkylglycerone phosphate synthase on the expression profile of circRNAs in the human thyroid cancer cell line FRO.Oncol Lett. 2018 May;15(5):7889-7899. doi: 10.3892/ol.2018.8356. Epub 2018 Mar 26.
159 Silencing of A-Kinase Anchor Protein 4 (AKAP4) Inhibits Proliferation and Progression of Thyroid Cancer.Oncol Res. 2017 Jul 5;25(6):873-878. doi: 10.3727/096504016X14783701102564. Epub 2016 Nov 8.
160 Dysadherin specific drug conjugates for the treatment of thyroid cancers with aggressive phenotypes.Oncotarget. 2017 Apr 11;8(15):24457-24468. doi: 10.18632/oncotarget.14904.
161 Anoctamin5 regulates cell migration and invasion in thyroid cancer.Int J Oncol. 2017 Oct;51(4):1311-1319. doi: 10.3892/ijo.2017.4113. Epub 2017 Sep 1.
162 Comprehensive analysis of the clinical significance and prospective molecular mechanisms of differentially expressed autophagy-related genes in thyroid cancer.Int J Oncol. 2018 Aug;53(2):603-619. doi: 10.3892/ijo.2018.4404. Epub 2018 May 11.
163 Restoration of Brain Acid Soluble Protein 1 Inhibits Proliferation and Migration of Thyroid Cancer Cells.Chin Med J (Engl). 2016 Jun 20;129(12):1439-46. doi: 10.4103/0366-6999.183434.
164 The bHLH transcription factor DEC1 promotes thyroid cancer aggressiveness by the interplay with NOTCH1.Cell Death Dis. 2018 Aug 29;9(9):871. doi: 10.1038/s41419-018-0933-y.
165 Identification of Novel Oncogenic Mutations inThyroid Cancer.J Am Coll Surg. 2016 Jun;222(6):1036-1043.e2. doi: 10.1016/j.jamcollsurg.2015.12.047. Epub 2016 Jan 14.
166 Iodine-131 treatment of thyroid cancer cells leads to suppression of cell proliferation followed by induction of cell apoptosis and cell cycle arrest by regulation of B-cell translocation gene 2-mediated JNK/NF-B pathways.Braz J Med Biol Res. 2017 Jan 16;50(1):e5933. doi: 10.1590/1414-431X20165933.
167 Absence of allelic imbalance involving EMSY, CAPN5, and PAK1 genes in papillary thyroid carcinoma.J Endocrinol Invest. 2008 Jul;31(7):618-23. doi: 10.1007/BF03345613.
168 Role of Chemokines in Thyroid Cancer Microenvironment: Is CXCL8 the Main Player?.Front Endocrinol (Lausanne). 2018 Jun 21;9:314. doi: 10.3389/fendo.2018.00314. eCollection 2018.
169 CITED1 gene promotes proliferation, migration and invasion in papillary thyroid cancer.Oncol Lett. 2018 Jul;16(1):105-112. doi: 10.3892/ol.2018.8653. Epub 2018 May 7.
170 Targeting COPZ1 non-oncogene addiction counteracts the viability of thyroid tumor cells.Cancer Lett. 2017 Dec 1;410:201-211. doi: 10.1016/j.canlet.2017.09.024. Epub 2017 Sep 23.
171 Increased expression of EHF contributes to thyroid tumorigenesis through transcriptionally regulating HER2 and HER3.Oncotarget. 2016 Sep 6;7(36):57978-57990. doi: 10.18632/oncotarget.11154.
172 Relationship of Focally Amplified Long Noncoding on Chromosome 1 (FAL1) lncRNA with E2F Transcription Factors in Thyroid Cancer.Medicine (Baltimore). 2016 Jan;95(4):e2592. doi: 10.1097/MD.0000000000002592.
173 An integrated analysis of cancer genes in thyroid cancer.Oncol Rep. 2016 Feb;35(2):962-70. doi: 10.3892/or.2015.4466. Epub 2015 Dec 1.
174 Case Report of Birt-Hogg-Dub Syndrome: Germline Mutations of FLCN Detected in Patients With Renal Cancer and Thyroid Cancer.Medicine (Baltimore). 2016 May;95(22):e3695. doi: 10.1097/MD.0000000000003695.
175 Human a-L-fucosidase-1 attenuates the invasive properties of thyroid cancer.Oncotarget. 2017 Apr 18;8(16):27075-27092. doi: 10.18632/oncotarget.15635.
176 Frizzled-1 is down-regulated in follicular thyroid tumours and modulates growth and invasiveness.J Pathol. 2008 May;215(1):87-96. doi: 10.1002/path.2331.
177 Emerging roles of circRNA_NEK6 targeting miR-370-3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway.Cancer Biol Ther. 2018;19(12):1139-1152. doi: 10.1080/15384047.2018.1480888. Epub 2018 Sep 12.
178 Knockdown of GATAD2A suppresses cell proliferation in thyroid cancer invitro.Oncol Rep. 2017 Apr;37(4):2147-2152. doi: 10.3892/or.2017.5436. Epub 2017 Feb 10.
179 Elevated HMGN4 expression potentiates thyroid tumorigenesis.Carcinogenesis. 2017 Apr 1;38(4):391-401. doi: 10.1093/carcin/bgx015.
180 HORMAD2 methylation-mediated epigenetic regulation of gene expression in thyroid cancer.J Cell Mol Med. 2018 Oct;22(10):4640-4652. doi: 10.1111/jcmm.13680. Epub 2018 Jul 24.
181 Changes in expression of human serine protease HtrA1, HtrA2 and HtrA3 genes in benign and malignant thyroid tumors.Oncol Rep. 2012 Nov;28(5):1838-44. doi: 10.3892/or.2012.1988. Epub 2012 Aug 23.
182 Tumour suppressive function of HUWE1 in thyroid cancer.J Biosci. 2016 Sep;41(3):395-405. doi: 10.1007/s12038-016-9623-z.
183 Loss-of-function of IFT88 determines metabolic phenotypes in thyroid cancer.Oncogene. 2018 Aug;37(32):4455-4474. doi: 10.1038/s41388-018-0211-6. Epub 2018 May 10.
184 THADA fusion is a mechanism of IGF2BP3 activation and IGF1R signaling in thyroid cancer.Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2307-2312. doi: 10.1073/pnas.1614265114. Epub 2017 Feb 13.
185 IL-17RB enhances thyroid cancer cell invasion and metastasis via ERK1/2 pathway-mediated MMP-9 expression.Mol Immunol. 2017 Oct;90:126-135. doi: 10.1016/j.molimm.2017.06.034. Epub 2017 Jul 15.
186 Overexpression of ING5 inhibits HGF-induced proliferation, invasion and EMT in thyroid cancer cells via regulation of the c-Met/PI3K/Akt signaling pathway.Biomed Pharmacother. 2018 Feb;98:265-270. doi: 10.1016/j.biopha.2017.12.045. Epub 2017 Dec 27.
187 Intratumor heterogeneity and clonal evolution in an aggressive papillary thyroid cancer and matched metastases.Endocr Relat Cancer. 2015 Apr;22(2):205-16. doi: 10.1530/ERC-14-0351. Epub 2015 Feb 17.
188 Activating KIR2DS5 receptor is a risk for thyroid cancer.Hum Immunol. 2012 Oct;73(10):1017-22. doi: 10.1016/j.humimm.2012.07.325. Epub 2012 Jul 23.
189 Coupling of LETM1 up-regulation with oxidative phosphorylation and platelet-derived growth factor receptor signaling via YAP1 transactivation.Oncotarget. 2016 Oct 11;7(41):66728-66739. doi: 10.18632/oncotarget.11456.
190 LRP4 promotes proliferation, migration, and invasion in papillary thyroid cancer.Biochem Biophys Res Commun. 2018 Sep 3;503(1):257-263. doi: 10.1016/j.bbrc.2018.06.012. Epub 2018 Jun 11.
191 MREG suppresses thyroid cancer cell invasion and proliferation by inhibiting Akt-mTOR signaling.Biochem Biophys Res Commun. 2017 Sep 9;491(1):72-78. doi: 10.1016/j.bbrc.2017.07.044. Epub 2017 Jul 8.
192 A novel tumor suppressor gene NCOA5 is correlated with progression in papillary thyroid carcinoma.Onco Targets Ther. 2018 Jan 11;11:307-311. doi: 10.2147/OTT.S154158. eCollection 2018.
193 E4BP4 promotes thyroid cancer proliferation by modulating iron homeostasis through repression of hepcidin.Cell Death Dis. 2018 Sep 24;9(10):987. doi: 10.1038/s41419-018-1001-3.
194 Expression of the NOB1 gene and its clinical significance in papillary thyroid carcinoma.J Int Med Res. 2013 Jun;41(3):568-72. doi: 10.1177/0300060513479862. Epub 2013 May 17.
195 Downregulation of Notch-regulated Ankyrin Repeat Protein Exerts Antitumor Activities against Growth of Thyroid Cancer.Chin Med J (Engl). 2016 Jul 5;129(13):1544-52. doi: 10.4103/0366-6999.184465.
196 Poly r(C) binding protein (PCBP) 1 expression is regulated at the post-translation level in thyroid carcinoma.Am J Transl Res. 2017 Feb 15;9(2):708-714. eCollection 2017.
197 RET/PCM-1: a novel fusion gene in papillary thyroid carcinoma.Oncogene. 2000 Aug 31;19(37):4236-42. doi: 10.1038/sj.onc.1203772.
198 Therapeutic effects of adenovirus-mediated CD and NIS expression combined with Na(131)I/5-FC on human thyroid cancer.Oncol Lett. 2017 Dec;14(6):7431-7436. doi: 10.3892/ol.2017.7175. Epub 2017 Oct 12.
199 A new POT1 germline mutation-expanding the spectrum of POT1-associated cancers.Fam Cancer. 2017 Oct;16(4):561-566. doi: 10.1007/s10689-017-9984-y.
200 The common genetic variant rs944289 on chromosome 14q13.3 associates with risk of both malignant and benign thyroid tumors in the Japanese population.Thyroid. 2015 Mar;25(3):333-40. doi: 10.1089/thy.2014.0431. Epub 2015 Feb 5.
201 Aberrant Activation of Notch Signaling Inhibits PROX1 Activity to Enhance the Malignant Behavior of Thyroid Cancer Cells.Cancer Res. 2016 Feb 1;76(3):582-93. doi: 10.1158/0008-5472.CAN-15-1199. Epub 2015 Nov 25.
202 Elevated PTTG and PBF predicts poor patient outcome and modulates DNA damage response genes in thyroid cancer.Oncogene. 2017 Sep 14;36(37):5296-5308. doi: 10.1038/onc.2017.154. Epub 2017 May 15.
203 MiR-150 Inhibits Cell Growth In Vitro and In Vivo by Restraining the RAB11A/WNT/-Catenin Pathway in Thyroid Cancer.Med Sci Monit. 2017 Oct 12;23:4885-4894. doi: 10.12659/msm.906997.
204 mRNA expression pattern of retinoic acid and retinoid X nuclear receptor subtypes in human thyroid papillary carcinoma.Oncol Rep. 2013 Nov;30(5):2371-8. doi: 10.3892/or.2013.2670. Epub 2013 Aug 20.
205 Inactivation of Ret/Ptc1 oncoprotein and inhibition of papillary thyroid carcinoma cell proliferation by indolinone RPI-1.Cell Mol Life Sci. 2003 Jul;60(7):1449-59. doi: 10.1007/s00018-003-2381-8.
206 Germline and somatic SDHx alterations in apparently sporadic differentiated thyroid cancer.Endocr Relat Cancer. 2015 Apr;22(2):121-30. doi: 10.1530/ERC-14-0537.
207 Elevated Concentrations of SERPINE2/Protease Nexin-1 and Secretory Leukocyte Protease Inhibitor in the Serum of Patients with Papillary Thyroid Cancer.Dis Markers. 2017;2017:4962137. doi: 10.1155/2017/4962137. Epub 2017 Jan 31.
208 Solute carrier family 35 member F2 is indispensable for papillary thyroid carcinoma progression through activation of transforming growth factor- type I receptor/apoptosis signal-regulating kinase 1/mitogen-activated protein kinase signaling axis.Cancer Sci. 2018 Mar;109(3):642-655. doi: 10.1111/cas.13478. Epub 2018 Feb 1.
209 LncRNA SPRY4-IT was concerned with the poor prognosis and contributed to the progression of thyroid cancer.Cancer Gene Ther. 2018 Feb;25(1-2):39-46. doi: 10.1038/s41417-017-0003-0. Epub 2017 Dec 12.
210 HABP2 germline variants are uncommon in familial nonmedullary thyroid cancer.BMC Med Genet. 2016 Aug 17;17(1):60. doi: 10.1186/s12881-016-0323-1.
211 Effect of Interferon- on the Basal and the TNF-Stimulated Secretion of CXCL8 in Thyroid Cancer Cell Lines Bearing Either the RET/PTC Rearrangement Or the BRAF V600e Mutation.Mediators Inflamm. 2016;2016:8512417. doi: 10.1155/2016/8512417. Epub 2016 Jul 31.
212 Silencing of TCTN1 inhibits proliferation, induces cell cycle arrest and apoptosis in human thyroid cancer.Exp Ther Med. 2017 Oct;14(4):3720-3726. doi: 10.3892/etm.2017.4940. Epub 2017 Aug 16.
213 Lysyl Oxidase (LOX) Transcriptionally Regulates SNAI2 Expression and TIMP4 Secretion in Human Cancers.Clin Cancer Res. 2016 Sep 1;22(17):4491-504. doi: 10.1158/1078-0432.CCR-15-2461. Epub 2016 Mar 30.
214 Long non-coding RNA NEAT1 promotes malignant progression of thyroid carcinoma by regulating miRNA-214.Int J Oncol. 2017 Feb;50(2):708-716. doi: 10.3892/ijo.2016.3803. Epub 2016 Dec 14.
215 TRIM29 promotes progression of thyroid carcinoma via activating P13K/AKT signaling pathway.Oncol Rep. 2017 Mar;37(3):1555-1564. doi: 10.3892/or.2017.5364. Epub 2017 Jan 13.
216 Knockdown of TRIM44 inhibits the proliferation and invasion in papillary thyroid cancer cells through suppressing the Wnt/-catenin signaling pathway.Biomed Pharmacother. 2017 Dec;96:98-103. doi: 10.1016/j.biopha.2017.09.132. Epub 2017 Sep 29.
217 CD97 amplifies LPA receptor signaling and promotes thyroid cancer progression in a mouse model.Oncogene. 2013 May 30;32(22):2726-38. doi: 10.1038/onc.2012.301. Epub 2012 Jul 16.
218 Knockdown of BAG3 induces epithelial-mesenchymal transition in thyroid cancer cells through ZEB1 activation.Cell Death Dis. 2014 Feb 27;5(2):e1092. doi: 10.1038/cddis.2014.32.
219 A nested case-control study of polychlorinated biphenyls, organochlorine pesticides, and thyroid cancer in the Janus Serum Bank cohort.Environ Res. 2018 Aug;165:125-132. doi: 10.1016/j.envres.2018.04.012. Epub 2018 Apr 23.
220 Vitamin D receptor expression is linked to potential markers of human thyroid papillary carcinoma.J Steroid Biochem Mol Biol. 2016 May;159:26-30. doi: 10.1016/j.jsbmb.2016.02.016. Epub 2016 Feb 22.
221 Metformin Targets Mitochondrial Glycerophosphate Dehydrogenase to Control Rate of Oxidative Phosphorylation and Growth of Thyroid Cancer In Vitro and In Vivo.Clin Cancer Res. 2018 Aug 15;24(16):4030-4043. doi: 10.1158/1078-0432.CCR-17-3167. Epub 2018 Apr 24.
222 Knockdown of IQGAP1 inhibits proliferation and epithelial-mesenchymal transition by Wnt/-catenin pathway in thyroid cancer.Onco Targets Ther. 2017 Mar 13;10:1549-1559. doi: 10.2147/OTT.S128564. eCollection 2017.
223 Mutant MYO1F alters the mitochondrial network and induces tumor proliferation in thyroid cancer.Int J Cancer. 2018 Oct 1;143(7):1706-1719. doi: 10.1002/ijc.31548. Epub 2018 May 7.
224 Steroid receptor coactivator-1 interacts with NF-B to increase VEGFC levels in human thyroid cancer.Biosci Rep. 2018 Jun 12;38(3):BSR20180394. doi: 10.1042/BSR20180394. Print 2018 Jun 29.
225 Gene master regulators of papillary and anaplastic thyroid cancers.Oncotarget. 2017 Dec 19;9(2):2410-2424. doi: 10.18632/oncotarget.23417. eCollection 2018 Jan 5.
226 Pictorial Representation of Illness and Self Measure-Revised 2 (PRISM-R2): an effective tool to assess perceived burden of thyroid cancer in mainland China.Support Care Cancer. 2018 Sep;26(9):3267-3275. doi: 10.1007/s00520-018-4172-7. Epub 2018 Apr 11.
227 PRIMA-1 selectively induces global DNA demethylation in p53 mutant-type thyroid cancer cells.J Biomed Nanotechnol. 2014 Jul;10(7):1249-58. doi: 10.1166/jbn.2014.1862.
228 EBP1 suppresses growth, migration, and invasion of thyroid cancer cells through upregulating RASAL expression.Tumour Biol. 2015 Nov;36(11):8325-31. doi: 10.1007/s13277-015-3523-y. Epub 2015 May 26.
229 Relaxin enhances the collagenolytic activity and in vitro invasiveness by upregulating matrix metalloproteinases in human thyroid carcinoma cells.Mol Cancer Res. 2011 Jun;9(6):673-87. doi: 10.1158/1541-7786.MCR-10-0411. Epub 2011 Apr 14.
230 The high expression of TC1 (C8orf4) was correlated with the expression of -catenin and cyclin D1 and the progression of squamous cell carcinomas of the tongue.Tumour Biol. 2015 Sep;36(9):7061-7. doi: 10.1007/s13277-015-3423-1. Epub 2015 Apr 14.
231 Effect of ABCE1-silencing gene, transfected by electrotransfer, on the proliferation, invasion, and migration of human thyroid carcinoma SW579 cells.Genet Mol Res. 2015 Nov 23;14(4):14680-9. doi: 10.4238/2015.November.18.32.
232 Molecular Analysis by Gene Expression of Mitochondrial ATPase Subunits in Papillary Thyroid Cancer: Is ATP5E Transcript a Possible Early Tumor Marker?.Med Sci Monit. 2015 Jun 16;21:1745-51. doi: 10.12659/MSM.893597.
233 MiR-539 inhibits thyroid cancer cell migration and invasion by directly targeting CARMA1.Biochem Biophys Res Commun. 2015 Sep 4;464(4):1128-1133. doi: 10.1016/j.bbrc.2015.07.090. Epub 2015 Jul 20.
234 CCNG2 suppressor biological effects on thyroid cancer cell through promotion of CDK2 degradation.Asian Pac J Cancer Prev. 2013;14(10):6165-71. doi: 10.7314/apjcp.2013.14.10.6165.
235 Loss of CPSF2 expression is associated with increased thyroid cancer cellular invasion and cancer stem cell population, and more aggressive disease.J Clin Endocrinol Metab. 2014 Jul;99(7):E1173-82. doi: 10.1210/jc.2013-4140. Epub 2014 Mar 21.
236 X-ray repair cross-complementing group 1(XRCC1) genetic polymorphisms and thyroid carcinoma risk: a meta-analysis.Asian Pac J Cancer Prev. 2012;13(12):6385-90. doi: 10.7314/apjcp.2012.13.12.6385.
237 Expression of miR-100 and RBSP3 in FTC-133 cells after exposure to 131I.Nucl Med Commun. 2014 Sep;35(9):932-8. doi: 10.1097/MNM.0000000000000142.
238 DNA methylation of MAPK signal-inhibiting genes in papillary thyroid carcinoma.Anticancer Res. 2013 Nov;33(11):4833-9.
239 FOXE1 regulates migration and invasion in thyroid cancer cells and targets ZEB1.Endocr Relat Cancer. 2020 Mar;27(3):137-151. doi: 10.1530/ERC-19-0156.
240 Inherited variants in genes somatically mutated in thyroid cancer.PLoS One. 2017 Apr 14;12(4):e0174995. doi: 10.1371/journal.pone.0174995. eCollection 2017.
241 The insulin resistance Grb14 adaptor protein promotes thyroid cancer ret signaling and progression.Oncogene. 2012 Sep 6;31(36):4012-21. doi: 10.1038/onc.2011.569. Epub 2011 Dec 12.
242 Segregation and expression analyses of hyaluronan-binding protein 2 (HABP2): insights from a large series of familial non-medullary thyroid cancers and literature review.Clin Endocrinol (Oxf). 2017 Jun;86(6):837-844. doi: 10.1111/cen.13316. Epub 2017 Mar 23.
243 Helicase-like transcription factor: a new marker of well-differentiated thyroid cancers.BMC Cancer. 2014 Jul 8;14:492. doi: 10.1186/1471-2407-14-492.
244 HOXC10 up-regulation contributes to human thyroid cancer and indicates poor survival outcome.Mol Biosyst. 2015 Nov;11(11):2946-54. doi: 10.1039/c5mb00253b.
245 Mismatch repair single nucleotide polymorphisms and thyroid cancer susceptibility.Oncol Lett. 2018 May;15(5):6715-6726. doi: 10.3892/ol.2018.8103. Epub 2018 Feb 21.
246 microRNA-106b-mediated down-regulation of C1orf24 expression induces apoptosis and suppresses invasion of thyroid cancer.Oncotarget. 2015 Sep 29;6(29):28357-70. doi: 10.18632/oncotarget.4947.
247 DNA methylation signatures identify biologically distinct thyroid cancer subtypes.J Clin Endocrinol Metab. 2013 Jul;98(7):2811-21. doi: 10.1210/jc.2012-3566. Epub 2013 May 10.
248 Frequent concerted genetic mechanisms disrupt multiple components of the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in thyroid cancer.Mol Cancer. 2013 Oct 20;12(1):124. doi: 10.1186/1476-4598-12-124.
249 REC8 is a novel tumor suppressor gene epigenetically robustly targeted by the PI3K pathway in thyroid cancer.Oncotarget. 2015 Nov 17;6(36):39211-24. doi: 10.18632/oncotarget.5391.
250 RTN4IP1 is down-regulated in thyroid cancer and has tumor-suppressive function.J Clin Endocrinol Metab. 2013 Mar;98(3):E446-54. doi: 10.1210/jc.2012-3180. Epub 2013 Feb 7.
251 SASH1 inhibits proliferation and invasion of thyroid cancer cells through PI3K/Akt signaling pathway.Int J Clin Exp Pathol. 2015 Oct 1;8(10):12276-83. eCollection 2015.
252 Down-regulation of miR-218-2 and its host gene SLIT3 cooperate to promote invasion and progression of thyroid cancer.J Clin Endocrinol Metab. 2013 Aug;98(8):E1334-44. doi: 10.1210/jc.2013-1053. Epub 2013 May 29.
253 Loss of sorting nexin 5 stabilizes internalized growth factor receptors to promote thyroid cancer progression.J Pathol. 2017 Nov;243(3):342-353. doi: 10.1002/path.4951.
254 Extracellular Superoxide Dismutase Expression in Papillary Thyroid Cancer Mesenchymal Stem/Stromal Cells Modulates Cancer Cell Growth and Migration.Sci Rep. 2017 Feb 20;7:41416. doi: 10.1038/srep41416.
255 Epigenetic regulation of Wnt signaling pathway gene SRY-related HMG-box 17 in papillary thyroid carcinoma.Chin Med J (Engl). 2012 Oct;125(19):3526-31.
256 SPC24 is critical for anaplastic thyroid cancer progression.Oncotarget. 2017 Mar 28;8(13):21884-21891. doi: 10.18632/oncotarget.15670.
257 Novel antiapoptotic effect of TBX15: overexpression of TBX15 reduces apoptosis in cancer cells.Apoptosis. 2015 Oct;20(10):1338-46. doi: 10.1007/s10495-015-1155-8.
258 ABI3 ectopic expression reduces in vitro and in vivo cell growth properties while inducing senescence.BMC Cancer. 2011 Jan 11;11:11. doi: 10.1186/1471-2407-11-11.
259 TFG, a target of chromosome translocations in lymphoma and soft tissue tumors, fuses to GPR128 in healthy individuals.Haematologica. 2010 Jan;95(1):20-6. doi: 10.3324/haematol.2009.011536. Epub 2009 Oct 1.
260 Silencing of XB130 is associated with both the prognosis and chemosensitivity of gastric cancer.PLoS One. 2012;7(8):e41660. doi: 10.1371/journal.pone.0041660. Epub 2012 Aug 23.
261 The cancer/testis antigen melanoma-associated antigen-A3/A6 is a novel target of fibroblast growth factor receptor 2-IIIb through histone H3 modifications in thyroid cancer.Clin Cancer Res. 2007 Aug 15;13(16):4713-20. doi: 10.1158/1078-0432.CCR-07-0618.
262 Rapid screening of specific changes in mRNA in thyroid carcinomas by sequence specific-differential display: decreased expression of acid ceramidase mRNA in malignant and benign thyroid tumors.Int J Cancer. 1999 May 31;81(5):700-4. doi: 10.1002/(sici)1097-0215(19990531)81:5<700::aid-ijc5>3.0.co;2-d.
263 The role of human achaete-scute homolog-1 in medullary thyroid cancer cells.Surgery. 2003 Dec;134(6):866-71; discussion 871-3. doi: 10.1016/s0039-6060(03)00418-5.
264 Activating transcription factor-1-mediated hepatocyte growth factor-induced down-regulation of thrombospondin-1 expression leads to thyroid cancer cell invasion.J Biol Chem. 2007 May 25;282(21):15490-7. doi: 10.1074/jbc.M610586200. Epub 2007 Apr 4.
265 CRABP1, C1QL1 and LCN2 are biomarkers of differentiated thyroid carcinoma, and predict extrathyroidal extension.BMC Cancer. 2018 Jan 10;18(1):68. doi: 10.1186/s12885-017-3948-3.
266 Heterochromatin protein 1 expression is reduced in human thyroid malignancy.Lab Invest. 2014 Jul;94(7):788-95. doi: 10.1038/labinvest.2014.68. Epub 2014 May 19.
267 The cl2/dro1/ccdc80 null mice develop thyroid and ovarian neoplasias.Cancer Lett. 2015 Feb 28;357(2):535-41. doi: 10.1016/j.canlet.2014.12.010. Epub 2014 Dec 9.
268 Synergistic repression of thyroid hyperplasia by cyclin C and Pten.J Cell Sci. 2019 Aug 15;132(16):jcs230029. doi: 10.1242/jcs.230029.
269 CD82, and CD63 in thyroid cancer.Int J Mol Med. 2004 Oct;14(4):517-27.
270 CDC23 regulates cancer cell phenotype and is overexpressed in papillary thyroid cancer.Endocr Relat Cancer. 2011 Nov 28;18(6):731-42. doi: 10.1530/ERC-11-0181. Print 2011.
271 GINS2 promotes cell proliferation and inhibits cell apoptosis in thyroid cancer by regulating CITED2 and LOXL2.Cancer Gene Ther. 2019 Mar;26(3-4):103-113. doi: 10.1038/s41417-018-0045-y. Epub 2018 Sep 4.
272 Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers.J Clin Invest. 2011 Mar;121(3):851-65. doi: 10.1172/JCI44111. Epub 2011 Feb 7.
273 Expression of p57/Kip2 protein in normal and neoplastic thyroid tissues.Int J Mol Med. 2002 Apr;9(4):373-6.
274 CREB3L2-PPARgamma fusion mutation identifies a thyroid signaling pathway regulated by intramembrane proteolysis.Cancer Res. 2008 Sep 1;68(17):7156-64. doi: 10.1158/0008-5472.CAN-08-1085.
275 Methylation of DACT2 promotes papillary thyroid cancer metastasis by activating Wnt signaling.PLoS One. 2014 Nov 6;9(11):e112336. doi: 10.1371/journal.pone.0112336. eCollection 2014.
276 Death-associated protein 3 is overexpressed in human thyroid oncocytic tumours.Br J Cancer. 2009 Jul 7;101(1):132-8. doi: 10.1038/sj.bjc.6605111. Epub 2009 Jun 16.
277 Rewiring of the apoptotic TGF--SMAD/NFB pathway through an oncogenic function of p27 in human papillary thyroid cancer.Oncogene. 2017 Feb 2;36(5):652-666. doi: 10.1038/onc.2016.233. Epub 2016 Jul 25.
278 NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation.Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5051-6. doi: 10.1073/pnas.1420707112. Epub 2015 Apr 6.
279 A novel amplification target, DUSP26, promotes anaplastic thyroid cancer cell growth by inhibiting p38 MAPK activity.Oncogene. 2007 Feb 22;26(8):1178-87. doi: 10.1038/sj.onc.1209899. Epub 2006 Aug 21.
280 Expression of eukaryotic translation initiation factors 4E and 2alpha correlates with the progression of thyroid carcinoma.Thyroid. 2001 Dec;11(12):1101-7. doi: 10.1089/10507250152740939.
281 Differential expression of multiple isoforms of the ELKS mRNAs involved in a papillary thyroid carcinoma.Genes Chromosomes Cancer. 2002 Sep;35(1):30-7. doi: 10.1002/gcc.10095.
282 Mitogen-inducible gene-6 is a multifunctional adaptor protein with tumor suppressor-like activity in papillary thyroid cancer.J Clin Endocrinol Metab. 2011 Mar;96(3):E554-65. doi: 10.1210/jc.2010-1800. Epub 2010 Dec 29.
283 INT-2 gene amplification in differentiated human thyroid cancer.Exp Clin Endocrinol Diabetes. 1996;104 Suppl 4:101-4. doi: 10.1055/s-0029-1211713.
284 Oleanolic acid inhibits cell proliferation migration and invasion and induces SW579 thyroid cancer cell line apoptosis by targeting forkhead transcription factor A.Anticancer Drugs. 2019 Sep;30(8):812-820. doi: 10.1097/CAD.0000000000000777.
285 The Effect of Hexavalent Chromium on the Incidence and Mortality of Human Cancers: A Meta-Analysis Based on Published Epidemiological Cohort Studies.Front Oncol. 2019 Feb 4;9:24. doi: 10.3389/fonc.2019.00024. eCollection 2019.
286 Evaluation of germline sequence variants of GFRA1, GFRA2, and GFRA3 genes in a cohort of Spanish patients with sporadic medullary thyroid cancer.Thyroid. 2002 Nov;12(11):1017-22. doi: 10.1089/105072502320908367.
287 PAX8-GLIS3 gene fusion is a pathognomonic genetic alteration of hyalinizing trabecular tumors of the thyroid.Mod Pathol. 2019 Dec;32(12):1734-1743. doi: 10.1038/s41379-019-0313-x. Epub 2019 Jul 4.
288 Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RET-fused gene RFG5.Cancer Res. 1998 Jan 15;58(2):198-203.
289 Targeting the proteasome as a promising therapeutic strategy in thyroid cancer.J Surg Oncol. 2012 Mar 15;105(4):357-64. doi: 10.1002/jso.22113. Epub 2011 Oct 17.
290 Silencing GPX3 Expression Promotes Tumor Metastasis in Human Thyroid Cancer.Curr Protein Pept Sci. 2015;16(4):316-21. doi: 10.2174/138920371604150429154840.
291 Improved determination of variant erythrocytes at the glycophorin A (GPA) locus and variant frequency in patients treated with radioiodine for thyroid cancer.Int J Radiat Biol. 1996 Aug;70(2):131-43. doi: 10.1080/095530096145120.
292 EDAG-1 promotes proliferation and invasion of human thyroid cancer cells by activating MAPK/Erk and AKT signal pathways.Cancer Biol Ther. 2016 Apr 2;17(4):414-21. doi: 10.1080/15384047.2016.1156259. Epub 2016 Mar 2.
293 Hsa-miR-139-5p is a prognostic thyroid cancer marker involved in HNRNPF-mediated alternative splicing.Int J Cancer. 2020 Jan 15;146(2):521-530. doi: 10.1002/ijc.32622. Epub 2019 Aug 28.
294 Pituitary tumor-transforming gene regulates multiple downstream angiogenic genes in thyroid cancer.J Clin Endocrinol Metab. 2006 Mar;91(3):1119-28. doi: 10.1210/jc.2005-1826. Epub 2006 Jan 4.
295 Suppression of Tafazzin promotes thyroid cancer apoptosis via activating the JNK signaling pathway and enhancing INF2-mediated mitochondrial fission.J Cell Physiol. 2019 Sep;234(9):16238-16251. doi: 10.1002/jcp.28287. Epub 2019 Feb 11.
296 Human medullary thyroid carcinoma: a source and potential target for relaxin-like hormones.Ann N Y Acad Sci. 2005 May;1041:449-61. doi: 10.1196/annals.1282.069.
297 MicroRNA-524-5p suppresses the progression of papillary thyroid carcinoma cells via targeting on FOXE1 and ITGA3 in cell autophagy and cycling pathways.J Cell Physiol. 2019 Aug;234(10):18382-18391. doi: 10.1002/jcp.28472. Epub 2019 Apr 2.
298 Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas.Br J Cancer. 2009 Nov 17;101(10):1782-91. doi: 10.1038/sj.bjc.6605340. Epub 2009 Oct 6.
299 KLLN epigenotype-phenotype associations in Cowden syndrome.Eur J Hum Genet. 2015 Nov;23(11):1538-43. doi: 10.1038/ejhg.2015.8. Epub 2015 Feb 11.
300 Expression of laminin-2 by normal and neoplastic rat C cells during the development of medullary thyroid carcinoma.Virchows Arch. 1999 Apr;434(4):325-32. doi: 10.1007/s004280050348.
301 Alazami syndrome: the first case of papillary thyroid carcinoma.J Hum Genet. 2020 Jan;65(2):133-141. doi: 10.1038/s10038-019-0682-5. Epub 2019 Oct 28.
302 LIMD2 is a small LIM-only protein overexpressed in metastatic lesions that regulates cell motility and tumor progression by directly binding to and activating the integrin-linked kinase.Cancer Res. 2014 Mar 1;74(5):1390-1403. doi: 10.1158/0008-5472.CAN-13-1275.
303 RAP1GAP inhibits cytoskeletal remodeling and motility in thyroid cancer cells.Endocr Relat Cancer. 2012 Jul 22;19(4):575-88. doi: 10.1530/ERC-12-0086. Print 2012 Aug.
304 Knockdown of IG20 gene expression renders thyroid cancer cells susceptible to apoptosis.J Clin Endocrinol Metab. 2009 Apr;94(4):1467-71. doi: 10.1210/jc.2008-2378. Epub 2009 Feb 3.
305 Mitosis perturbation by MASTL depletion impairs the viability of thyroid tumor cells.Cancer Lett. 2019 Feb 1;442:362-372. doi: 10.1016/j.canlet.2018.11.010. Epub 2018 Nov 14.
306 RET/PTC fusion gene rearrangements in Japanese thyroid carcinomas.Eur Arch Otorhinolaryngol. 2005 May;262(5):368-73. doi: 10.1007/s00405-004-0835-8. Epub 2004 Sep 11.
307 Abnormal expression of the MOS proto-oncogene in human thyroid medullary carcinoma.Cancer Lett. 1988 Dec 15;43(3):185-9. doi: 10.1016/0304-3835(88)90169-3.
308 Clinicopathological significance of major histocompatibility complex class I-related chain a and B expression in thyroid cancer.J Clin Endocrinol Metab. 2006 Jul;91(7):2704-12. doi: 10.1210/jc.2006-0492. Epub 2006 Apr 18.
309 HLA-DR alpha gene regulation in immortalized human thyroid cancer cells.Clin Immunol Immunopathol. 1993 May;67(2):151-6. doi: 10.1006/clin.1993.1058.
310 Metallothionein 1G functions as a tumor suppressor in thyroid cancer through modulating the PI3K/Akt signaling pathway.BMC Cancer. 2013 Oct 8;13:462. doi: 10.1186/1471-2407-13-462.
311 Low metallothionein 1M (MT1M) is associated with thyroid cancer cell lines progression.Am J Transl Res. 2019 Mar 15;11(3):1760-1770. eCollection 2019.
312 L-myc gene polymorphism and risk of thyroid cancer.Exp Oncol. 2008 Jun;30(2):117-20.
313 Napsin A Expression in Subtypes of Thyroid Tumors: Comparison with Lung Adenocarcinomas.Endocr Pathol. 2020 Mar;31(1):39-45. doi: 10.1007/s12022-019-09600-6.
314 Expression profile of the N-myc Downstream Regulated Gene 2 (NDRG2) in human cancers with focus on breast cancer.BMC Cancer. 2011 Jan 12;11:14. doi: 10.1186/1471-2407-11-14.
315 Human herpes simplex viruses in benign and malignant thyroid tumours.J Pathol. 2010 Jun;221(2):193-200. doi: 10.1002/path.2701.
316 Positive Feedback Loops Between NrCAM and Major Signaling Pathways Contribute to Thyroid Tumorigenesis.J Clin Endocrinol Metab. 2017 Feb 1;102(2):613-624. doi: 10.1210/jc.2016-1677.
317 High level of tumour protein p53-induced nuclear protein 1 (TP53INP1) expression in anaplastic carcinoma of the thyroid.Pathology. 2006 Dec;38(6):545-7. doi: 10.1080/00313020601024094.
318 A KRAB zinc finger protein gene is the potential target of 19q13 translocation in benign thyroid tumors.Genes Chromosomes Cancer. 1999 Nov;26(3):229-36.
319 Overexpressed in anaplastic thyroid carcinoma-1 (OEATC-1) as a novel gene responsible for anaplastic thyroid carcinoma.Cancer. 2005 May 1;103(9):1785-90. doi: 10.1002/cncr.20988.
320 Methylation of tumour suppressor genes associated with thyroid cancer.Cancer Biomark. 2019;25(1):53-65. doi: 10.3233/CBM-182265.
321 Podoplanin (PDPN) affects the invasiveness of thyroid carcinoma cells by inducing ezrin, radixin and moesin (E/R/M) phosphorylation in association with matrix metalloproteinases.BMC Cancer. 2019 Jan 17;19(1):85. doi: 10.1186/s12885-018-5239-z.
322 Autocrine production of interleukin-4 and interleukin-10 is required for survival and growth of thyroid cancer cells.Cancer Res. 2006 Feb 1;66(3):1491-9. doi: 10.1158/0008-5472.CAN-05-2514.
323 Expression of the ring ligase PRAJA2 in thyroid cancer.J Clin Endocrinol Metab. 2012 Nov;97(11):4253-9. doi: 10.1210/jc.2012-2360. Epub 2012 Sep 4.
324 Selenium decreases thyroid cancer cell growth by increasing expression of GADD153 and GADD34.Nutr Cancer. 2010;62(1):66-73. doi: 10.1080/01635580903191569.
325 Transcriptional orchestration of mitochondrial homeostasis in a cellular model of PGC-1-related coactivator-dependent thyroid tumor.Oncotarget. 2018 Mar 23;9(22):15883-15894. doi: 10.18632/oncotarget.24633. eCollection 2018 Mar 23.
326 RIZ1 is epigenetically inactivated by promoter hypermethylation in thyroid carcinoma. Cancer. 2006 Dec 15;107(12):2752-9. doi: 10.1002/cncr.22325.
327 Upregulation of endocrine gland-derived vascular endothelial growth factor in papillary thyroid cancers displaying infiltrative patterns, lymph node metastases, and BRAF mutation.Thyroid. 2011 Apr;21(4):391-9. doi: 10.1089/thy.2010.0168.
328 Familial adenomatous polyposis-associated thyroid cancer: a clinical, pathological, and molecular genetics study.Am J Pathol. 1999 Jan;154(1):127-35. doi: 10.1016/S0002-9440(10)65259-5.
329 Fine-needle aspiration biopsy-RT-PCR expression analysis of prothymosin alpha and parathymosin in thyroid: novel proliferation markers?.Neoplasma. 2007;54(1):57-62.
330 RAD52 polymorphisms contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population.J Endocrinol Invest. 2008 Oct;31(10):893-9. doi: 10.1007/BF03346438.
331 Rap1GAP alters leukemia cell differentiation, apoptosis and invasion invitro.Oncol Rep. 2012 Aug;28(2):622-8. doi: 10.3892/or.2012.1825. Epub 2012 May 18.
332 RASSF1A promoter methylation is associated with increased risk of thyroid cancer: a meta-analysis.Onco Targets Ther. 2017 Jan 9;10:247-257. doi: 10.2147/OTT.S124417. eCollection 2017.
333 Frequent epigenetic inactivation of RASSF10 in thyroid cancer.Epigenetics. 2009 Nov 16;4(8):571-6. doi: 10.4161/epi.4.8.10056. Epub 2009 Nov 14.
334 Frequent epigenetic inactivation of RASSF2 in thyroid cancer and functional consequences.Mol Cancer. 2010 Sep 29;9:264. doi: 10.1186/1476-4598-9-264.
335 [Study of HRas1 minisatellite frequencies in children with thyroid papillary cancer].Tsitol Genet. 2004 Jan-Feb;38(1):9-14.
336 RbAp48 is a target of nuclear factor-kappaB activity in thyroid cancer.J Clin Endocrinol Metab. 2007 Apr;92(4):1458-66. doi: 10.1210/jc.2006-2199. Epub 2007 Jan 23.
337 RCAN1-4 is a thyroid cancer growth and metastasis suppressor.JCI Insight. 2017 Mar 9;2(5):e90651. doi: 10.1172/jci.insight.90651.
338 Integrated ligand-receptor bioinformatic and in vitro functional analysis identifies active TGFA/EGFR signaling loop in papillary thyroid carcinomas.PLoS One. 2010 Sep 22;5(9):e12701. doi: 10.1371/journal.pone.0012701.
339 Overexpression of the HIP gene coding for a heparin/heparan sulfate-binding protein in human thyroid carcinomas.Cancer Res. 1998 Oct 15;58(20):4745-51.
340 Modern approaches to age-old questions about thyroid tumors.Thyroid. 2005 Jun;15(6):575-82. doi: 10.1089/thy.2005.15.575.
341 Germline Heterozygous Variants in SEC23B Are Associated with Cowden Syndrome and Enriched in Apparently Sporadic Thyroid Cancer. Am J Hum Genet. 2015 Nov 5;97(5):661-76. doi: 10.1016/j.ajhg.2015.10.001. Epub 2015 Oct 29.
342 Targeting cell migration and the endoplasmic reticulum stress response with calmodulin antagonists: a clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells.BMC Cancer. 2013 Dec 5;13:574. doi: 10.1186/1471-2407-13-574.
343 Sustained activation of the AKT/mTOR and MAP kinase pathways mediate resistance to the Src inhibitor, dasatinib, in thyroid cancer.Oncotarget. 2017 Aug 24;8(61):103014-103031. doi: 10.18632/oncotarget.20488. eCollection 2017 Nov 28.
344 SIRT4 inhibits the proliferation, migration, and invasion abilities of thyroid cancer cells by inhibiting glutamine metabolism.Onco Targets Ther. 2019 Mar 28;12:2397-2408. doi: 10.2147/OTT.S189536. eCollection 2019.
345 SIRT7 promotes thyroid tumorigenesis through phosphorylation and activation of Akt and p70S6K1 via DBC1/SIRT1 axis.Oncogene. 2019 Jan;38(3):345-359. doi: 10.1038/s41388-018-0434-6. Epub 2018 Aug 9.
346 Oncometabolites as biomarkers in thyroid cancer: a systematic review.Cancer Manag Res. 2019 Feb 25;11:1829-1841. doi: 10.2147/CMAR.S188661. eCollection 2019.
347 Thyroid tumorigenesis and molecular markers in thyroid cancer.Curr Opin Oncol. 2010 Jan;22(1):23-9. doi: 10.1097/CCO.0b013e328333846f.
348 miR-4319 inhibited the development of thyroid cancer by modulating FUS-stabilized SMURF1.J Cell Biochem. 2020 Jan;121(1):174-182. doi: 10.1002/jcb.29026. Epub 2019 May 30.
349 Sperm-associated antigen 9: a novel diagnostic marker for thyroid cancer.J Clin Endocrinol Metab. 2009 Nov;94(11):4613-8. doi: 10.1210/jc.2009-0703. Epub 2009 Oct 9.
350 Mouse Model of Poorly Differentiated Thyroid Carcinoma Driven by STRN-ALK Fusion.Am J Pathol. 2018 Nov;188(11):2653-2661. doi: 10.1016/j.ajpath.2018.07.012. Epub 2018 Aug 18.
351 Genetic markers to discriminate benign and malignant thyroid nodules with undetermined cytology in an area of borderline iodine deficiency.J Endocrinol Invest. 2012 Sep;35(8):754-9. doi: 10.3275/8012. Epub 2011 Oct 4.
352 BRAFV600E mutation, TIMP-1 upregulation, and NF-B activation: closing the loop on the papillary thyroid cancer trilogy.Endocr Relat Cancer. 2011 Nov 14;18(6):669-85. doi: 10.1530/ERC-11-0076. Print 2011 Dec.
353 Tight junctions in thyroid carcinogenesis: diverse expression of claudin-1, claudin-4, claudin-7 and occludin in thyroid neoplasms.Mod Pathol. 2008 Jan;21(1):22-30. doi: 10.1038/modpathol.3800959. Epub 2007 Oct 26.
354 Down-regulation of an inhibitor of cell growth, transmembrane protein 34 (TMEM34), in anaplastic thyroid cancer.J Cancer Res Clin Oncol. 2007 Apr;133(4):213-8. doi: 10.1007/s00432-006-0159-8. Epub 2006 Oct 28.
355 Downregulation of TSPAN13 by miR-369-3p inhibits cell proliferation in papillary thyroid cancer (PTC).Bosn J Basic Med Sci. 2019 May 20;19(2):146-154. doi: 10.17305/bjbms.2018.2865.
356 Transcriptional activation of the thyroglobulin promoter directing suicide gene expression by thyroid transcription factor-1 in thyroid cancer cells.Cancer Res. 2001 May 1;61(9):3640-6.
357 Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma.Mol Cell Endocrinol. 2010 May 28;321(1):36-43. doi: 10.1016/j.mce.2009.09.013. Epub 2009 Sep 18.
358 Downregulated long noncoding RNA LINC00313 inhibits the epithelial-mesenchymal transition, invasion, and migration of thyroid cancer cells through inhibiting the methylation of ALX4.J Cell Physiol. 2019 Nov;234(11):20992-21004. doi: 10.1002/jcp.28703. Epub 2019 May 15.
359 Long Non-coding RNA Expression in Anaplastic Thyroid Carcinomas.Endocr Pathol. 2019 Dec;30(4):262-269. doi: 10.1007/s12022-019-09589-y.
360 Serous BMP8A has Clinical Significance in the Ultrasonic Diagnosis of Thyroid Cancer and Promotes Thyroid Cancer Cell Progression.Endocr Metab Immune Disord Drug Targets. 2020;20(4):591-598. doi: 10.2174/1871530319666191018170022.
361 Rtfc (4931414P19Rik) Regulates in vitro Thyroid Differentiation and in vivo Thyroid Function.Sci Rep. 2017 Feb 23;7:43396. doi: 10.1038/srep43396.
362 Serum deprivation response functions as a tumor suppressor gene in papillary thyroid cancer.Clin Genet. 2019 Nov;96(5):418-428. doi: 10.1111/cge.13609. Epub 2019 Jul 31.
363 Generation and identification of a thyroid cancer cell line with stable expression of CCDC67 and luciferase reporter genes.Oncol Lett. 2019 Nov;18(5):4495-4502. doi: 10.3892/ol.2019.10839. Epub 2019 Sep 10.
364 Type 2 iodothyronine deiodinase is highly expressed in medullary thyroid carcinoma.Mol Cell Endocrinol. 2008 Jul 16;289(1-2):16-22. doi: 10.1016/j.mce.2008.04.009. Epub 2008 Apr 22.
365 Genetic Variants Implicate Dual Oxidase-2 in Familial and Sporadic Nonmedullary Thyroid Cancer.Cancer Res. 2019 Nov 1;79(21):5490-5499. doi: 10.1158/0008-5472.CAN-19-0721. Epub 2019 Sep 9.
366 The role of EIF1AX in thyroid cancer tumourigenesis and progression.J Endocrinol Invest. 2019 Mar;42(3):313-318. doi: 10.1007/s40618-018-0919-8. Epub 2018 Jul 2.
367 Long non-coding RNA BANCR regulates cancer stem cell markers in papillary thyroid cancer via the RAF/MEK/ERK signaling pathway.Oncol Rep. 2018 Aug;40(2):859-866. doi: 10.3892/or.2018.6502. Epub 2018 Jun 18.
368 The C allele of the GNB3 C825T polymorphism of the G protein beta3-subunit is associated with an increased risk for the development of oncocytic thyroid tumours.J Pathol. 2007 Jan;211(1):60-6. doi: 10.1002/path.2084.
369 Knockdown of HCP5 exerts tumor-suppressive functions by up-regulating tumor suppressor miR-128-3p in anaplastic thyroid cancer.Biomed Pharmacother. 2019 Aug;116:108966. doi: 10.1016/j.biopha.2019.108966. Epub 2019 May 16.
370 Expression and localization of the homeodomain-containing protein HEX in human thyroid tumors.J Clin Endocrinol Metab. 2002 Mar;87(3):1376-83. doi: 10.1210/jcem.87.3.8344.
371 IGSF1: A novel oncogene regulates the thyroid cancer progression.Cell Biochem Funct. 2019 Oct;37(7):516-524. doi: 10.1002/cbf.3426. Epub 2019 Jul 25.
372 Comprehensive Exploration to Identify Predictive DNA Markers of Np63/SOX2 in Drug Resistance in Human Esophageal Squamous Cell Carcinoma.Ann Surg Oncol. 2019 Dec;26(13):4814-4825. doi: 10.1245/s10434-019-07795-w. Epub 2019 Sep 16.
373 A ceRNA Circuitry Involving the Long Noncoding RNA Klhl14-AS, Pax8, and Bcl2 Drives Thyroid Carcinogenesis.Cancer Res. 2019 Nov 15;79(22):5746-5757. doi: 10.1158/0008-5472.CAN-19-0039. Epub 2019 Sep 26.
374 LRIG1 negatively regulates RET mutants and is downregulated in thyroid cancer.Int J Oncol. 2018 Apr;52(4):1189-1197. doi: 10.3892/ijo.2018.4273. Epub 2018 Feb 9.
375 Novel design of NIR-triggered plasmonic nanodots capped mesoporous silica nanoparticles loaded with natural capsaicin to inhibition of metastasis of human papillary thyroid carcinoma B-CPAP cells in thyroid cancer chemo-photothermal therapy.J Photochem Photobiol B. 2019 Aug;197:111534. doi: 10.1016/j.jphotobiol.2019.111534. Epub 2019 Jun 15.
376 MicroRNA-592 suppresses the malignant phenotypes of thyroid cancer by regulating lncRNA NEAT1 and downregulating NOVA1.Int J Mol Med. 2019 Sep;44(3):1172-1182. doi: 10.3892/ijmm.2019.4278. Epub 2019 Jul 16.
377 Genetic variants of PARP4 gene and PARP4P2 pseudogene in patients with multiple primary tumors including thyroid cancer.Mutat Res. 2019 Nov;816-818:111672. doi: 10.1016/j.mrfmmm.2019.111672. Epub 2019 Jun 1.
378 Loss of One or Two PATZ1 Alleles Has a Critical Role in the Progression of Thyroid Carcinomas Induced by the RET/PTC1 Oncogene.Cancers (Basel). 2018 Mar 27;10(4):92. doi: 10.3390/cancers10040092.
379 Original tumour suppressor gene polycystic kidney and hepatic disease 1-like 1 is associated with thyroid cancer cell progression.Oncol Lett. 2019 Sep;18(3):3227-3235. doi: 10.3892/ol.2019.10632. Epub 2019 Jul 18.
380 REG potentiates TGF-/Smad signal dependent epithelial-mesenchymal transition in thyroid cancer cells.Cell Signal. 2019 Dec;64:109412. doi: 10.1016/j.cellsig.2019.109412. Epub 2019 Sep 3.
381 miR-206 inhibits thyroid cancer proliferation and invasion by targeting RAP1B.J Cell Biochem. 2019 Nov;120(11):18927-18936. doi: 10.1002/jcb.29213. Epub 2019 Jun 27.
382 MiR-299-3p functions as a tumor suppressor in thyroid cancer by regulating SHOC2.Eur Rev Med Pharmacol Sci. 2019 Jan;23(1):232-240. doi: 10.26355/eurrev_201901_16769.
383 Iodine promotes thyroid cancer development via SPANXA1 through the PI3K/AKT signalling pathway.Oncol Lett. 2019 Jul;18(1):637-644. doi: 10.3892/ol.2019.10391. Epub 2019 May 21.
384 TFAP2B overexpression contributes to tumor growth and progression of thyroid cancer through the COX-2 signaling pathway.Cell Death Dis. 2019 May 21;10(6):397. doi: 10.1038/s41419-019-1600-7.
385 TFCP2/TFCP2L1/UBP1 transcription factors in cancer.Cancer Lett. 2018 Apr 28;420:72-79. doi: 10.1016/j.canlet.2018.01.078. Epub 2018 Feb 7.
386 TRIP13 interference inhibits the proliferation and metastasis of thyroid cancer cells through regulating TTC5/p53 pathway and epithelial-mesenchymal transition related genes expression.Biomed Pharmacother. 2019 Dec;120:109508. doi: 10.1016/j.biopha.2019.109508. Epub 2019 Oct 22.