General Information of Drug Off-Target (DOT) (ID: OTYTUW29)

DOT Name Procathepsin L (CTSL)
Synonyms EC 3.4.22.15; Cathepsin L1; Major excreted protein; MEP
Gene Name CTSL
UniProt ID
CATL1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1CJL ; 1CS8 ; 1ICF ; 1MHW ; 2NQD ; 2VHS ; 2XU1 ; 2XU3 ; 2XU4 ; 2XU5 ; 2YJ2 ; 2YJ8 ; 2YJ9 ; 2YJB ; 2YJC ; 3BC3 ; 3H89 ; 3H8B ; 3H8C ; 3HHA ; 3HWN ; 3IV2 ; 3K24 ; 3KSE ; 3OF8 ; 3OF9 ; 4AXL ; 4AXM ; 5F02 ; 5I4H ; 5MAE ; 5MAJ ; 5MQY ; 6EZP ; 6EZX ; 6F06 ; 6JD0 ; 6JD8 ; 7QKB ; 7QKC ; 7QKD ; 7W33 ; 7W34 ; 7Z3T ; 7Z58 ; 7ZS7 ; 7ZVF ; 7ZXA ; 8A4U ; 8A4V ; 8A4W ; 8A4X ; 8A5B ; 8AHV ; 8B4F ; 8C77 ; 8GX2 ; 8OFA ; 8OZA ; 8PRX ; 8QKB
EC Number
3.4.22.15
Pfam ID
PF08246 ; PF00112
Sequence
MNPTLILAAFCLGIASATLTFDHSLEAQWTKWKAMHNRLYGMNEEGWRRAVWEKNMKMIE
LHNQEYREGKHSFTMAMNAFGDMTSEEFRQVMNGFQNRKPRKGKVFQEPLFYEAPRSVDW
REKGYVTPVKNQGQCGSCWAFSATGALEGQMFRKTGRLISLSEQNLVDCSGPQGNEGCNG
GLMDYAFQYVQDNGGLDSEESYPYEATEESCKYNPKYSVANDTGFVDIPKQEKALMKAVA
TVGPISVAIDAGHESFLFYKEGIYFEPDCSSEDMDHGVLVVGYGFESTESDNNKYWLVKN
SWGEEWGMGGYVKMAKDRRNHCGIASAASYPTV
Function
Thiol protease important for the overall degradation of proteins in lysosomes (Probable). Plays a critical for normal cellular functions such as general protein turnover, antigen processing and bone remodeling. Involved in the solubilization of cross-linked TG/thyroglobulin and in the subsequent release of thyroid hormone thyroxine (T4) by limited proteolysis of TG/thyroglobulin in the thyroid follicle lumen. In neuroendocrine chromaffin cells secretory vesicles, catalyzes the prohormone proenkephalin processing to the active enkephalin peptide neurotransmitter. In thymus, regulates CD4(+) T cell positive selection by generating the major histocompatibility complex class II (MHCII) bound peptide ligands presented by cortical thymic epithelial cells. Also mediates invariant chain processing in cortical thymic epithelial cells. Major elastin-degrading enzyme at neutral pH. Accumulates as a mature and active enzyme in the extracellular space of antigen presenting cells (APCs) to regulate degradation of the extracellular matrix in the course of inflammation. Secreted form generates endostatin from COL18A1. Critical for cardiac morphology and function. Plays an important role in hair follicle morphogenesis and cycling, as well as epidermal differentiation. Required for maximal stimulation of steroidogenesis by TIMP1; (Microbial infection) In cells lacking TMPRSS2 expression, facilitates human coronaviruses SARS-CoV and SARS-CoV-2 infections via a slow acid-activated route with the proteolysis of coronavirus spike (S) glycoproteins in lysosome for entry into host cell. Proteolysis within lysosomes is sufficient to activate membrane fusion by coronaviruses SARS-CoV and EMC (HCoV-EMC) S as well as Zaire ebolavirus glycoproteins ; [Isoform 2]: Functions in the regulation of cell cycle progression through proteolytic processing of the CUX1 transcription factor. Translation initiation at downstream start sites allows the synthesis of isoforms that are devoid of a signal peptide and localize to the nucleus where they cleave the CUX1 transcription factor and modify its DNA binding properties.
KEGG Pathway
Autophagy - animal (hsa04140 )
Lysosome (hsa04142 )
Phagosome (hsa04145 )
Apoptosis (hsa04210 )
Antigen processing and presentation (hsa04612 )
Proteoglycans in cancer (hsa05205 )
Rheumatoid arthritis (hsa05323 )
Fluid shear stress and atherosclerosis (hsa05418 )
Reactome Pathway
Collagen degradation (R-HSA-1442490 )
Degradation of the extracellular matrix (R-HSA-1474228 )
Trafficking and processing of endosomal TLR (R-HSA-1679131 )
Assembly of collagen fibrils and other multimeric structures (R-HSA-2022090 )
MHC class II antigen presentation (R-HSA-2132295 )
RUNX1 regulates transcription of genes involved in differentiation of keratinocytes (R-HSA-8939242 )
Attachment and Entry (R-HSA-9678110 )
Attachment and Entry (R-HSA-9694614 )
Endosomal/Vacuolar pathway (R-HSA-1236977 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Procathepsin L (CTSL) decreases the response to substance of Cisplatin. [29]
Paclitaxel DMLB81S Approved Procathepsin L (CTSL) increases the response to substance of Paclitaxel. [30]
Topotecan DMP6G8T Approved Procathepsin L (CTSL) affects the response to substance of Topotecan. [31]
------------------------------------------------------------------------------------
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Procathepsin L (CTSL). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Procathepsin L (CTSL). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Procathepsin L (CTSL). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Procathepsin L (CTSL). [4]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Procathepsin L (CTSL). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Procathepsin L (CTSL). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Procathepsin L (CTSL). [7]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Procathepsin L (CTSL). [8]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Procathepsin L (CTSL). [9]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Procathepsin L (CTSL). [10]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of Procathepsin L (CTSL). [11]
Phenytoin DMNOKBV Approved Phenytoin increases the expression of Procathepsin L (CTSL). [2]
Amodiaquine DME4RA8 Approved Amodiaquine decreases the activity of Procathepsin L (CTSL). [12]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Procathepsin L (CTSL). [13]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Procathepsin L (CTSL). [16]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Procathepsin L (CTSL). [19]
Eugenol DM7US1H Patented Eugenol increases the expression of Procathepsin L (CTSL). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Procathepsin L (CTSL). [20]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Procathepsin L (CTSL). [21]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of Procathepsin L (CTSL). [22]
4-hydroxy-2-nonenal DM2LJFZ Investigative 4-hydroxy-2-nonenal decreases the expression of Procathepsin L (CTSL). [24]
AHPN DM8G6O4 Investigative AHPN decreases the expression of Procathepsin L (CTSL). [25]
Choline DM5D9YK Investigative Choline affects the expression of Procathepsin L (CTSL). [26]
1-(1-(thiophen-2-yl)ethylidene)thiosemicarbazide DMQSEF6 Investigative 1-(1-(thiophen-2-yl)ethylidene)thiosemicarbazide decreases the activity of Procathepsin L (CTSL). [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)
6 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Berberine DMC5Q8X Phase 4 Berberine decreases the cleavage of Procathepsin L (CTSL). [14]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone affects the cleavage of Procathepsin L (CTSL). [15]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate decreases the cleavage of Procathepsin L (CTSL). [14]
D-glucose DMMG2TO Investigative D-glucose increases the secretion of Procathepsin L (CTSL). [23]
Bafilomycin A1 DMUNK59 Investigative Bafilomycin A1 decreases the cleavage of Procathepsin L (CTSL). [14]
2-APB DM9AKVR Investigative 2-APB decreases the cleavage of Procathepsin L (CTSL). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Procathepsin L (CTSL). [17]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Procathepsin L (CTSL). [18]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Phenytoin and cyclosporin A suppress the expression of MMP-1, TIMP-1, and cathepsin L, but not cathepsin B in cultured gingival fibroblasts. J Periodontol. 2000 Jun;71(6):955-60. doi: 10.1902/jop.2000.71.6.955.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2'-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci. 2006 Jan;97(1):64-71.
9 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
10 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
11 Comparative gene expression analysis of a chronic myelogenous leukemia cell line resistant to cyclophosphamide using oligonucleotide arrays and response to tyrosine kinase inhibitors. Leuk Res. 2007 Nov;31(11):1511-20.
12 The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death. Autophagy. 2013 Dec;9(12):2087-102. doi: 10.4161/auto.26506. Epub 2013 Oct 8.
13 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
14 Berbamine Hydrochloride inhibits lysosomal acidification by activating Nox2 to potentiate chemotherapy-induced apoptosis via the ROS-MAPK pathway in human lung carcinoma cells. Cell Biol Toxicol. 2023 Aug;39(4):1297-1317. doi: 10.1007/s10565-022-09756-8. Epub 2022 Sep 7.
15 A role for the autophagy regulator Transcription Factor EB in amiodarone-induced phospholipidosis. Biochem Pharmacol. 2015 Jun 1;95(3):201-9. doi: 10.1016/j.bcp.2015.03.017. Epub 2015 Apr 13.
16 Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol. 2007 May;44(12):3222-33.
17 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
18 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Bisphenol A and bisphenol S induce distinct transcriptional profiles in differentiating human primary preadipocytes. PLoS One. 2016 Sep 29;11(9):e0163318.
21 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
22 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
23 Calorie restriction-induced changes in the secretome of human adipocytes, comparison with resveratrol-induced secretome effects. Biochim Biophys Acta. 2014 Sep;1844(9):1511-22. doi: 10.1016/j.bbapap.2014.04.023. Epub 2014 May 5.
24 Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. Free Radic Biol Med. 2002 Nov 15;33(10):1419-32.
25 Identification of retinoid-modulated proteins in squamous carcinoma cells using high-throughput immunoblotting. Cancer Res. 2004 Apr 1;64(7):2439-48. doi: 10.1158/0008-5472.can-03-2643.
26 Lymphocyte gene expression in subjects fed a low-choline diet differs between those who develop organ dysfunction and those who do not. Am J Clin Nutr. 2007 Jul;86(1):230-9. doi: 10.1093/ajcn/86.1.230.
27 The relationship between Cd-induced autophagy and lysosomal activation in WRL-68 cells. J Appl Toxicol. 2015 Nov;35(11):1398-405. doi: 10.1002/jat.3114. Epub 2015 Jan 29.
28 Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J Virol. 2013 Jul;87(14):8017-28. doi: 10.1128/JVI.00998-13. Epub 2013 May 15.
29 Cathepsin L-mediated resistance of paclitaxel and cisplatin is mediated by distinct regulatory mechanisms. J Exp Clin Cancer Res. 2019 Aug 1;38(1):333. doi: 10.1186/s13046-019-1299-4.
30 cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance. Breast Cancer Res Treat. 2006 Mar;96(1):17-39. doi: 10.1007/s10549-005-9026-6. Epub 2005 Dec 2.
31 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.