General Information of Drug Off-Target (DOT) (ID: OTYYQX85)

DOT Name ADP-ribosylation factor 3 (ARF3)
Gene Name ARF3
Related Disease
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Capillary malformation-arteriovenous malformation syndrome ( )
Complex neurodevelopmental disorder ( )
Myotonic dystrophy ( )
Neoplasm ( )
Testicular germ cell tumor ( )
Neuroblastoma ( )
Parkinson disease ( )
UniProt ID
ARF3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6II6; 8P50
Pfam ID
PF00025
Sequence
MGNIFGNLLKSLIGKKEMRILMVGLDAAGKTTILYKLKLGEIVTTIPTIGFNVETVEYKN
ISFTVWDVGGQDKIRPLWRHYFQNTQGLIFVVDSNDRERVNEAREELMRMLAEDELRDAV
LLVFANKQDLPNAMNAAEITDKLGLHSLRHRNWYIQATCATSGDGLYEGLDWLANQLKNK
K
Function
GTP-binding protein that functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP-ribosyltransferase. Involved in protein trafficking; may modulate vesicle budding and uncoating within the Golgi apparatus.
KEGG Pathway
Endocytosis (hsa04144 )
Reactome Pathway
COPI-mediated anterograde transport (R-HSA-6807878 )
COPI-dependent Golgi-to-ER retrograde traffic (R-HSA-6811434 )
Synthesis of PIPs at the Golgi membrane (R-HSA-1660514 )

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Genetic Variation [1]
Breast cancer DIS7DPX1 Strong Biomarker [2]
Breast carcinoma DIS2UE88 Strong Biomarker [2]
Capillary malformation-arteriovenous malformation syndrome DISMN03Q Strong Genetic Variation [3]
Complex neurodevelopmental disorder DISB9AFI Strong Autosomal dominant [4]
Myotonic dystrophy DISNBEMX Strong Biomarker [5]
Neoplasm DISZKGEW Strong Biomarker [6]
Testicular germ cell tumor DIS5RN24 Strong Biomarker [7]
Neuroblastoma DISVZBI4 moderate Biomarker [8]
Parkinson disease DISQVHKL Limited Biomarker [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved ADP-ribosylation factor 3 (ARF3) affects the response to substance of Fluorouracil. [21]
Paclitaxel DMLB81S Approved ADP-ribosylation factor 3 (ARF3) affects the response to substance of Paclitaxel. [22]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of ADP-ribosylation factor 3 (ARF3). [10]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of ADP-ribosylation factor 3 (ARF3). [11]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of ADP-ribosylation factor 3 (ARF3). [12]
Quercetin DM3NC4M Approved Quercetin increases the expression of ADP-ribosylation factor 3 (ARF3). [14]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol decreases the expression of ADP-ribosylation factor 3 (ARF3). [15]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of ADP-ribosylation factor 3 (ARF3). [16]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of ADP-ribosylation factor 3 (ARF3). [18]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of ADP-ribosylation factor 3 (ARF3). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of ADP-ribosylation factor 3 (ARF3). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of ADP-ribosylation factor 3 (ARF3). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of ADP-ribosylation factor 3 (ARF3). [17]
------------------------------------------------------------------------------------

References

1 Proteomics analysis of H-RAS-mediated oncogenic transformation in a genetically defined human ovarian cancer model.Oncogene. 2005 Sep 8;24(40):6174-84. doi: 10.1038/sj.onc.1208753.
2 Up-regulated ADP-Ribosylation factor 3 promotes breast cancer cell proliferation through the participation of FOXO1.Exp Cell Res. 2019 Nov 15;384(2):111624. doi: 10.1016/j.yexcr.2019.111624. Epub 2019 Sep 17.
3 RASA1 regulates the function of lymphatic vessel valves in mice.J Clin Invest. 2017 Jun 30;127(7):2569-2585. doi: 10.1172/JCI89607. Epub 2017 May 22.
4 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
5 The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase.EMBO J. 1996 Apr 15;15(8):1885-93.
6 Rab25 augments cancer cell invasiveness through a 1 integrin/EGFR/VEGF-A/Snail signaling axis and expression of fascin.Exp Mol Med. 2018 Jan 26;50(1):e435. doi: 10.1038/emm.2017.248.
7 Overexpression of RhoA mRNA is associated with advanced stage in testicular germ cell tumour.BJU Int. 2001 Feb;87(3):227-31. doi: 10.1046/j.1464-410x.2001.02030.x.
8 HaRas activates the NADPH oxidase complex in human neuroblastoma cells via extracellular signal-regulated kinase 1/2 pathway.J Neurochem. 2004 Nov;91(3):613-22. doi: 10.1111/j.1471-4159.2004.02754.x.
9 GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease.Biochemistry. 2007 Feb 6;46(5):1380-8. doi: 10.1021/bi061960m.
10 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
11 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
12 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
13 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
14 Differential protein expression of peroxiredoxin I and II by benzo(a)pyrene and quercetin treatment in 22Rv1 and PrEC prostate cell lines. Toxicol Appl Pharmacol. 2007 Apr 15;220(2):197-210. doi: 10.1016/j.taap.2006.12.030. Epub 2007 Jan 9.
15 The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol. Toxicol Sci. 2009 Jan;107(1):40-55.
16 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
17 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem. 2018 Apr 13;293(15):5600-5612.
20 Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010 Oct 15;248(2):111-21.
21 Mechanistic and predictive profiling of 5-Fluorouracil resistance in human cancer cells. Cancer Res. 2004 Nov 15;64(22):8167-76. doi: 10.1158/0008-5472.CAN-04-0970.
22 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.