General Information of Drug Off-Target (DOT) (ID: OTYZQJD3)

DOT Name Mitochondrial import inner membrane translocase subunit Tim13 (TIMM13)
Gene Name TIMM13
Related Disease
Advanced cancer ( )
UniProt ID
TIM13_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF02953
Sequence
MEGGFGSDFGGSGSGKLDPGLIMEQVKVQIAVANAQELLQRMTDKCFRKCIGKPGGSLDN
SEQKCIAMCMDRYMDAWNTVSRAYNSRLQRERANM
Function
Mitochondrial intermembrane chaperone that participates in the import and insertion of some multi-pass transmembrane proteins into the mitochondrial inner membrane. Also required for the transfer of beta-barrel precursors from the TOM complex to the sorting and assembly machinery (SAM complex) of the outer membrane. Acts as a chaperone-like protein that protects the hydrophobic precursors from aggregation and guide them through the mitochondrial intermembrane space. The TIMM8-TIMM13 complex mediates the import of proteins such as TIMM23, SLC25A12/ARALAR1 and SLC25A13/ARALAR2, while the predominant TIMM9-TIMM10 70 kDa complex mediates the import of much more proteins.
Tissue Specificity Ubiquitous, with highest expression in heart, kidney, liver and skeletal muscle.
Reactome Pathway
Mitochondrial protein import (R-HSA-1268020 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Paclitaxel DMLB81S Approved Mitochondrial import inner membrane translocase subunit Tim13 (TIMM13) affects the response to substance of Paclitaxel. [11]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Mitochondrial import inner membrane translocase subunit Tim13 (TIMM13). [2]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Mitochondrial import inner membrane translocase subunit Tim13 (TIMM13). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Mitochondrial import inner membrane translocase subunit Tim13 (TIMM13). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Mitochondrial import inner membrane translocase subunit Tim13 (TIMM13). [5]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Mitochondrial import inner membrane translocase subunit Tim13 (TIMM13). [6]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Mitochondrial import inner membrane translocase subunit Tim13 (TIMM13). [7]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Mitochondrial import inner membrane translocase subunit Tim13 (TIMM13). [8]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Mitochondrial import inner membrane translocase subunit Tim13 (TIMM13). [9]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Mitochondrial import inner membrane translocase subunit Tim13 (TIMM13). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Breast cancer screening with digital breast tomosynthesis - 4 year experience and comparison with national data.J Chin Med Assoc. 2018 Jan;81(1):70-80. doi: 10.1016/j.jcma.2017.05.013. Epub 2017 Nov 9.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
7 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
8 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
9 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
10 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
11 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.