General Information of Drug Combination (ID: DC9UP3E)

Drug Combination Name
Fentanyl Ropivacaine
Indication
Disease Entry Status REF
Breakthrough Pain Phase 3 [1]
Component Drugs Fentanyl   DM8WAHT Ropivacaine   DMSPJG2
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Fentanyl
Disease Entry ICD 11 Status REF
Analgesia MB40.8 Approved [2]
Traumatic brain injury NA07.Z Approved [3]
Cancer related pain MG30 Phase 3 [4]
Pain MG30-MG3Z Phase 3 [5]
Chronic pain MG30 Phase 1 [6]
Fentanyl Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Opioid receptor mu (MOP) TTKWM86 OPRM_HUMAN Modulator [9]
------------------------------------------------------------------------------------
Fentanyl Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [10]
------------------------------------------------------------------------------------
Fentanyl Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [11]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [12]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [13]
------------------------------------------------------------------------------------
Fentanyl Interacts with 13 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Transport [14]
Mu-type opioid receptor (OPRM1) OT16AAT8 OPRM_HUMAN Increases Phosphorylation [15]
Phospholipase D2 (PLD2) OT86I3WH PLD2_HUMAN Increases Activity [16]
Pro-opiomelanocortin (POMC) OTV41F7T COLI_HUMAN Decreases Expression [17]
Interleukin-4 (IL4) OTOXBWAU IL4_HUMAN Increases Expression [16]
NF-kappa-B inhibitor alpha (NFKBIA) OTFT924M IKBA_HUMAN Increases Expression [18]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Increases Phosphorylation [16]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Increases Phosphorylation [16]
Beta-arrestin-2 (ARRB2) OTAEJZCI ARRB2_HUMAN Affects Localization [19]
Interleukin-2 (IL2) OTGI4NSA IL2_HUMAN Decreases Expression [16]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [20]
Opioid growth factor receptor (OGFR) OTROS6RJ OGFR_HUMAN Increases ADR [21]
Adenylate cyclase type 1 (ADCY1) OTSLLFZO ADCY1_HUMAN Increases ADR [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 DOT(s)
Indication(s) of Ropivacaine
Disease Entry ICD 11 Status REF
Anaesthesia 9A78.6 Approved [7]
Appendicitis DB10 Approved [8]
Ropivacaine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Voltage-gated sodium channel alpha Nav1.8 (SCN10A) TT90XZ8 SCNAA_HUMAN Modulator [23]
------------------------------------------------------------------------------------
Ropivacaine Interacts with 4 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [24]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [25]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [26]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [26]
------------------------------------------------------------------------------------
Ropivacaine Interacts with 24 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Apoptosis-inducing factor 1, mitochondrial (AIFM1) OTKPWB7Q AIFM1_HUMAN Increases Expression [27]
L-lactate dehydrogenase A chain (LDHA) OTN7K4XB LDHA_HUMAN Increases Expression [28]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Expression [28]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Increases Expression [28]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [29]
Caspase-1 (CASP1) OTZ3YQFU CASP1_HUMAN Increases Cleavage [28]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [22]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Phosphorylation [22]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Expression [30]
Proliferation marker protein Ki-67 (MKI67) OTA8N1QI KI67_HUMAN Decreases Expression [22]
Potassium voltage-gated channel subfamily KQT member 1 (KCNQ1) OT8SPJNX KCNQ1_HUMAN Decreases Activity [31]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Decreases Expression [30]
Gasdermin-D (GSDMD) OTH39BKI GSDMD_HUMAN Increases Cleavage [28]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [22]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Decreases Expression [22]
Interleukin-18 (IL18) OTBB2A8O IL18_HUMAN Increases Expression [28]
Beclin-1 (BECN1) OT4X293M BECN1_HUMAN Increases Expression [22]
NACHT, LRR and PYD domains-containing protein 3 (NLRP3) OTZM6MHU NLRP3_HUMAN Increases Expression [28]
Sulfotransferase 1A1 (SULT1A1) OT0K7JIE ST1A1_HUMAN Increases Sulfation [32]
Histamine H1 receptor (HRH1) OT8F9FV6 HRH1_HUMAN Affects Binding [33]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Response To Substance [29]
Sulfotransferase 1E1 (SULT1E1) OTGPJ517 ST1E1_HUMAN Increases Sulfation [32]
Sulfotransferase 1A3 (SULT1A4) OTHJ8WWV ST1A3_HUMAN Increases Sulfation [32]
Clusterin (CLU) OTQGG0JM CLUS_HUMAN Decreases Response To Substance [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Upper Extremity DCA86WI N. A. Phase 4 [34]
Horner's Syndrome DCQ804I N. A. Phase 1 [35]
Congenital Skelectal Anomaly DCCIZZ4 N. A. Phase 1 [36]
------------------------------------------------------------------------------------

References

1 ClinicalTrials.gov (NCT02278601) Comparison of Regimens MPIB, CIPCEA, PCEA
2 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
3 Fentanyl FDA Label
4 ClinicalTrials.gov (NCT00822614) Safety of Fentanyl TAIFUN Treatment. U.S. National Institutes of Health.
5 A Phase III study to assess the clinical utility of low-dose fentanyl transdermal system in patients with chronic nonmalignant pain. Curr Med Res Opin. 2006 Aug;22(8):1493-501.
6 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
7 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7602).
8 Ropivacaine FDA Label
9 The ChEMBL database in 2017. Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954.
10 Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016 Jan 1;370(1):153-64.
11 Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther. 1999 Oct;291(1):424-33.
12 Pharmacogenomics as molecular autopsy for forensic toxicology: genotyping cytochrome P450 3A4*1B and 3A5*3 for 25 fentanyl cases. J Anal Toxicol. 2005 Oct;29(7):590-8.
13 Drug Interactions Flockhart Table
14 P-Glycoprotein on Blood-Brain Barrier Plays a Vital Role in Fentanyl Brain Exposure and Respiratory Toxicity in Rats. Toxicol Sci. 2018 Jul 1;164(1):353-362. doi: 10.1093/toxsci/kfy093.
15 A G protein-biased ligand at the ?-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther. 2013 Mar;344(3):708-17.
16 opioid receptor agonist-selective regulation of interleukin-4 in T lymphocytes. J Neuroimmunol. 2013 Oct 15;263(1-2):35-42. doi: 10.1016/j.jneuroim.2013.07.012. Epub 2013 Jul 25.
17 Serum beta-endorphin response to stress before and after operation under fentanyl anesthesia in neonates, infants and preschool children. Eur J Pediatr Surg. 2010 Mar;20(2):106-10. doi: 10.1055/s-0029-1243620. Epub 2010 Jan 18.
18 Mechanisms of the inhibition of nuclear factor-B by morphine in neuronal cells. Mol Pharmacol. 2012 Apr;81(4):587-97. doi: 10.1124/mol.111.076620. Epub 2012 Jan 18.
19 Functional and structural characterization of axonal opioid receptors as targets for analgesia. Mol Pain. 2016 Mar 1;12:1744806916628734. doi: 10.1177/1744806916628734. Print 2016.
20 Why are most phospholipidosis inducers also hERG blockers?. Arch Toxicol. 2017 Dec;91(12):3885-3895. doi: 10.1007/s00204-017-1995-9. Epub 2017 May 27.
21 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
22 Ropivacaine inhibits proliferation?and invasion?and promotes apoptosis and autophagy in bladder cancer cells via inhibiting PI3K/AKT pathway. J Biochem Mol Toxicol. 2023 Jan;37(1):e23233. doi: 10.1002/jbt.23233. Epub 2022 Oct 3.
23 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services.
24 Metabolism of a new local anesthetic, ropivacaine, by human hepatic cytochrome P450. Anesthesiology. 1995 Jan;82(1):214-20.
25 Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: an interaction study with fluvoxamine and ketoconazole as in vivo inhibitors. Clin Pharmacol Ther. 1998 Nov;64(5):484-91.
26 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
27 Effect of parthanatos on ropivacaine-induced damage in SH-SY5Y cells. Clin Exp Pharmacol Physiol. 2017 May;44(5):586-594. doi: 10.1111/1440-1681.12730.
28 Dexmedetomidine protects against Ropivacaine-induced neuronal pyroptosis via the Nrf2/HO-1 pathway. J Toxicol Sci. 2023;48(3):139-148. doi: 10.2131/jts.48.139.
29 Ectopic expression of clusterin/apolipoprotein J or Bcl-2 decreases the sensitivity of HaCaT cells to toxic effects of ropivacaine. Cell Res. 2004 Oct;14(5):415-22. doi: 10.1038/sj.cr.7290242.
30 Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am. 2010 Mar;92(3):609-18. doi: 10.2106/JBJS.H.01847.
31 Long QT 1 mutation KCNQ1A344V increases local anesthetic sensitivity of the slowly activating delayed rectifier potassium current. Anesthesiology. 2006 Sep;105(3):511-20. doi: 10.1097/00000542-200609000-00015.
32 Studies on sulfation of synthesized metabolites from the local anesthetics ropivacaine and lidocaine using human cloned sulfotransferases. Drug Metab Dispos. 1999 Sep;27(9):1057-63.
33 H(1)R mediates local anesthetic-induced vascular permeability in angioedema. Toxicol Appl Pharmacol. 2020 Apr 1;392:114921. doi: 10.1016/j.taap.2020.114921. Epub 2020 Feb 12.
34 ClinicalTrials.gov (NCT00724035) Ultrasound-Guided Axillary or Infraclavicular Nerve Block for Upper Limb Surgery
35 ClinicalTrials.gov (NCT02130739) Horner's SD After Thoracic Epidural Block
36 ClinicalTrials.gov (NCT02375191) A Comparative Study of the Effect of Epidural Dexmedetomidine Versus Fentanyl Added to Ropivacaine in Pediatric Orthopedic Surgery