General Information of Drug (ID: DMOL793)

Drug Name
Trifarotene
Synonyms
Trifarotene; UNII-0J8RN2W0HK; 895542-09-3; CD5789; 0J8RN2W0HK; Trifarotene [USAN:INN]; CD 5789; SCHEMBL381493; GTPL9962; CHEMBL3707313; DTXSID30237781; EX-A2704; DB12808; compound 15b [PMID: 29706423]; 3''-Tert-butyl-4'-(2-hydroxyethoxy)-4''-(pyrrolidin-1-yl)(1,1':3',1'')terphenyl-4-carboxylic acid; HY-100256; CS-0018407; 4-[3-(3-tert-butyl-4-pyrrolidin-1-ylphenyl)-4-(2-hydroxyethoxy)phenyl]benzoic acid; [1,1':3',1''-Terphenyl]-4-carboxylic acid, 3''-(1,1-dimethylethyl)-4'-(2-hydroxyethoxy)-4''-(1-pyrrolidinyl)-
Indication
Disease Entry ICD 11 Status REF
Acne vulgaris ED80 Approved [1]
Drug Type
Small molecular drug
Structure
3D MOL 2D MOL
#Ro5 Violations (Lipinski): 1 Molecular Weight (mw) 459.6
Topological Polar Surface Area (xlogp) 6.3
Rotatable Bond Count (rotbonds) 8
Hydrogen Bond Donor Count (hbonddonor) 2
Hydrogen Bond Acceptor Count (hbondacc) 5
ADMET Property
Absorption AUC
The area under the plot of plasma concentration (AUC) of drug is 0.075-0.104 mcgh/L [2]
Absorption Cmax
The maximum plasma concentration (Cmax) of drug is 10 ng/L [2]
Half-life
The concentration or amount of drug in body reduced by one-half in 2 - 9 hours [2]
Metabolism
The drug is metabolized via the liver [3]
Chemical Identifiers
Formula
C29H33NO4
IUPAC Name
4-[3-(3-tert-butyl-4-pyrrolidin-1-ylphenyl)-4-(2-hydroxyethoxy)phenyl]benzoic acid
Canonical SMILES
CC(C)(C)C1=C(C=CC(=C1)C2=C(C=CC(=C2)C3=CC=C(C=C3)C(=O)O)OCCO)N4CCCC4
InChI
InChI=1S/C29H33NO4/c1-29(2,3)25-19-23(10-12-26(25)30-14-4-5-15-30)24-18-22(11-13-27(24)34-17-16-31)20-6-8-21(9-7-20)28(32)33/h6-13,18-19,31H,4-5,14-17H2,1-3H3,(H,32,33)
InChIKey
MFBCDACCJCDGBA-UHFFFAOYSA-N
Cross-matching ID
PubChem CID
11518241
CAS Number
895542-09-3
DrugBank ID
DB12808
TTD ID
D06FOU
INTEDE ID
DR1640
ACDINA ID
D01504

Molecular Interaction Atlas of This Drug


Drug Therapeutic Target (DTT)
DTT Name DTT ID UniProt ID MOA REF
Retinoic acid receptor gamma (RARG) TT1Q3IE RARG_HUMAN Agonist [1]

Drug-Metabolizing Enzyme (DME)
DME Name DME ID UniProt ID MOA REF
Cytochrome P450 3A4 (CYP3A4)
Main DME
DE4LYSA CP3A4_HUMAN Substrate [4]
Cytochrome P450 2C9 (CYP2C9)
Main DME
DE5IED8 CP2C9_HUMAN Substrate [4]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Substrate [4]
Cytochrome P450 2C8 (CYP2C8)
Main DME
DES5XRU CP2C8_HUMAN Substrate [4]
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This Drug

Molecular Expression Atlas of This Drug

The Studied Disease Acne vulgaris
ICD Disease Classification ED80
Molecule Name Molecule Type Gene Name p-value Fold-Change Z-score
Retinoic acid receptor gamma (RARG) DTT RARG 5.43E-04 -0.14 -0.37
Molecular Expression Atlas (MEA) Jump to Detail Molecular Expression Atlas of This Drug

Drug Inactive Ingredient(s) (DIG) and Formulation(s) of This Drug

DIG
DIG Name DIG ID PubChem CID Functional Classification
Ethanol E00023 702 Antimicrobial preservative; Penetration agent; Solvent
Medium-chain triglyceride E00640 Not Available Emollient; Lubricant; Surfactant
Propylene glycol E00040 1030 Antimicrobial preservative; Humectant; Plasticizing agent; Solvent
Water E00035 962 Solvent
Allantoin E00006 204 Emollient
Cyclomethicone E00203 10913 Emollient; Humectant; Viscosity-controlling agent
Phenoxyethanol E00329 31236 Antimicrobial preservative
⏷ Show the Full List of 7 Pharmaceutical Excipients of This Drug
Pharmaceutical Formulation
Formulation Name Drug Dosage Dosage Form Route
Trifarotene 0.005% cream 0.01% Cream Topical
Jump to Detail Pharmaceutical Formulation Page of This Drug

References

1 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health Human Services. 2019
2 FDA Approved Drugs: Aklief?
3 Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, Alton KB: Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet. 2005;44(5):467-94.
4 FDA label of Trifarotene. The 2020 official website of the U.S. Food and Drug Administration.
5 Expression levels and activation of a PXR variant are directly related to drug resistance in osteosarcoma cell lines. Cancer. 2007 Mar 1;109(5):957-65.
6 Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica. 1998 Jun;28(6):539-47.
7 Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004 Sep;310(3):1062-75.
8 Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab Dispos. 2013 Feb;41(2):263-9.
9 Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies. J Pharm Pharmacol. 2017 Dec;69(12):1762-1772.
10 Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol. 2012 Apr;165(8):2787-98.
11 Effects of morin on the pharmacokinetics of etoposide in rats. Biopharm Drug Dispos. 2007 Apr;28(3):151-6.
12 The metabolism of zidovudine by human liver microsomes in vitro: formation of 3'-amino-3'-deoxythymidine. Biochem Pharmacol. 1994 Jul 19;48(2):267-76.
13 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
14 Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab Dispos. 2000 Dec;28(12):1457-63.
15 Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016 Jan;68(1):168-241.
16 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
17 Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics. 2003 Sep;13(9):565-75.
18 Analysis of human cytochrome P450 2C8 substrate specificity using a substrate pharmacophore and site-directed mutants. Biochemistry. 2004 Dec 14;43(49):15379-92.
19 Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8.
20 PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics. 2014 Jan;24(1):73-9.
21 Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth. 1998 Jun;80(6):788-95.
22 Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys. 1997 Oct 1;346(1):161-9.
23 Tamoxifen inhibits cytochrome P450 2C9 activity in breast cancer patients. J Chemother. 2006 Aug;18(4):421-4.
24 Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 2003 Aug;144(8):3382-98.
25 Drug-drug interactions with imatinib: an observational study. Medicine (Baltimore). 2016 Oct;95(40):e5076.
26 Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. 2000 Feb;28(2):125-30.
27 New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part I. Curr Drug Metab. 2009 Dec;10(10):1075-126.
28 A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res Treat. 2003 Dec;82(3):191-7.
29 A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother. 1998 May;32(5):554-63.
30 Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6. J Pharmacol Exp Ther. 2002 Jun;301(3):945-52.
31 Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways. Biochem Pharmacol. 1999 Sep 1;58(5):787-96.
32 Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B. 2016 Sep;6(5):413-425.
33 Drugs that may have potential CYP2B6 interactions.
34 Involvement of human cytochrome P450 2B6 in the omega- and 4-hydroxylation of the anesthetic agent propofol. Xenobiotica. 2007 Jul;37(7):717-24.
35 Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone metabolism by cytochrome P450 2B6. Drug Metab Dispos. 2005 Dec;33(12):1760-4.
36 PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics. 2012 Jun;22(6):466-70.
37 Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate. J Pharmacol Exp Ther. 2001 Apr;297(1):326-37.
38 Targacept active conformation search: a new method for predicting the conformation of a ligand bound to its protein target. J Med Chem. 2004 Dec 30;47(27):6831-9.
39 Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):30-4.
40 Recent developments in receptor-selective retinoids. Curr Pharm Des. 2000 Jun;6(9):919-31.
41 Randomised controlled trial for emphysema with a selective agonist of the gamma-type retinoic acid receptor. Eur Respir J. 2012 Aug;40(2):306-12.
42 Therapeutic use of selective synthetic ligands for retinoic acid receptors: a patent review.Expert Opin Ther Pat. 2016 Aug;26(8):957-71.