General Information of Disease (ID: DIS416Y7)

Disease Name Barrett esophagus
Synonyms
Barrett metaplasia; adenocarcinoma of esophagus; adenocarcinoma of oesophagus; Barrett's ulcer of oesophagus; ulcerative esophagitis; columnar-lined oesophagus; columnar-lined esophagus; cello; Barrett's oesophagus; columnar epithelial-lined Lower oesophagus; Barrett's esophagus with esophagitis; Barrett's oesophagus with esophagitis; Barrett's ulcer of esophagus; Barrett esophagus; Barrett esophagus/esophageal adenocarcinoma; CLE; columnar epithelial-lined Lower esophagus; Barrett's esophagus; BE; Barretts syndrome
Definition
Esophageal lesion lined with columnar metaplastic epithelium which is flat or villiform. Barrett epithelium is characterized by two different types of cells: goblet cells and columnar cells. The symptomatology of Barrett esophagus is that of gastro-esophageal reflux. It is the precursor of most esophageal adenocarcinomas. (WHO)
Disease Hierarchy
DIS5L3HQ: Esophageal disorder
DIS416Y7: Barrett esophagus
Disease Identifiers
MONDO ID
MONDO_0013662
MESH ID
D001471
UMLS CUI
C0004763
OMIM ID
614266
MedGen ID
2551
HPO ID
HP:0100580
Orphanet ID
1232
SNOMED CT ID
302914006

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 44 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
KCNH2 TTQ6VDM Limited Biomarker [1]
MSR1 TT2TDH9 Limited Unknown [2]
NR1H4 TTS4UGC Limited Biomarker [3]
SLC10A2 TTPI1M5 Limited Altered Expression [4]
TNFRSF12A TTKPS7V Limited Biomarker [5]
BMP4 TTD3BSX moderate Altered Expression [6]
CCNA2 TTAMQ62 moderate Biomarker [7]
MCL1 TTL53M6 moderate Biomarker [8]
AGR2 TT9K86S Strong Biomarker [9]
ANXA10 TT0NL6U Strong Altered Expression [10]
APOB TTN1IE2 Strong Genetic Variation [11]
ATP4A TTF1QVM Strong Biomarker [12]
BECN1 TT5M7LN Strong Biomarker [13]
BUB1 TT78309 Strong Altered Expression [14]
CD1A TTBGTFN Strong Biomarker [15]
CFTR TTRLZHP Strong Genetic Variation [16]
CLDN4 TTMTS9H Strong Altered Expression [17]
CRTC1 TT4GO0F Strong Genetic Variation [16]
CTSE TTLXC4Q Strong Altered Expression [18]
FABP1 TTIV96N Strong Altered Expression [19]
GAST TT4LRVO Strong Altered Expression [20]
GJC2 TTPOCAL Strong Biomarker [21]
HGF TT4V2JM Strong Biomarker [22]
IGFBP3 TTZHNQA Strong Biomarker [23]
IL18RAP TTZUJVE Strong Genetic Variation [24]
IL23R TT6H4QR Strong Genetic Variation [25]
ITGAE TTH0Z37 Strong Biomarker [26]
JMJD1C TTBISK4 Strong Genetic Variation [27]
KLRC1 TTC4IMS Strong Biomarker [28]
MADCAM1 TTBD6I7 Strong Biomarker [29]
MSR1 TT2TDH9 Strong Biomarker [30]
MUC17 TTVO0JU Strong Altered Expression [31]
MUC5AC TTEL90S Strong Biomarker [9]
NR1I2 TT7LCTF Strong Altered Expression [32]
PGC TT7K6AD Strong Biomarker [33]
PPARG TTT2SVW Strong Altered Expression [34]
PTGER2 TT1ZAVI Strong Altered Expression [35]
PTGES TTYLQ8V Strong Biomarker [36]
SLC12A6 TT8DFHE Strong Genetic Variation [37]
SLC9A1 TTGSEFH Strong Biomarker [8]
SST TTWF7UG Strong Biomarker [38]
TFF1 TTNOJIZ Strong Biomarker [39]
ZNF217 TTY3BRA Strong Biomarker [40]
CYP26A1 TTD7Q0R Definitive Biomarker [41]
------------------------------------------------------------------------------------
⏷ Show the Full List of 44 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
ABCC5 DTYVM24 Strong Biomarker [16]
ATP12A DT5NLZA Strong Biomarker [12]
------------------------------------------------------------------------------------
This Disease Is Related to 4 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
AKR1C2 DEOY5ZM Limited Biomarker [42]
MGST1 DEAPJSO Strong Genetic Variation [43]
MSRA DEU2ZBY Strong Genetic Variation [16]
SI DE5EO4Y Strong Biomarker [44]
------------------------------------------------------------------------------------
This Disease Is Related to 116 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
AMPD1 OTU17BCI Limited Altered Expression [45]
CTHRC1 OTV88X2G Limited Autosomal dominant [46]
EIF2B5 OTV3R4RB Limited Biomarker [47]
GPX3 OT6PK94R Limited Biomarker [48]
MAX OTKZ0YKM Limited Altered Expression [45]
MSR1 OTHANJ7A Limited Unknown [2]
MUC2 OT3X4QVX Limited Altered Expression [49]
PITX1 OTA0UN4C Limited Altered Expression [50]
RFX1 OTZUDMPR Limited Altered Expression [51]
RTRAF OTJ6NVMW Limited Biomarker [47]
TRIM21 OTA4UJCF Limited Altered Expression [52]
EYA4 OTINGR3Z moderate Altered Expression [53]
ADIPOR2 OT2HDTL8 Strong Biomarker [54]
AGO3 OTNQGROH Strong Genetic Variation [37]
ASCC1 OTH4VAP9 Strong Biomarker [30]
ATOH1 OTBZYG2R Strong Altered Expression [55]
ATP2A3 OTFYDEES Strong Biomarker [56]
B3GAT2 OTNSM9XP Strong Posttranslational Modification [57]
BARX1 OT2VP73H Strong Genetic Variation [58]
BEST2 OT48WOL1 Strong Genetic Variation [59]
BEST3 OTMY8G20 Strong Biomarker [60]
BFAR OTTBG0V7 Strong Biomarker [3]
BNC2 OTU22H9Z Strong Altered Expression [61]
C9 OT7I5FDX Strong Altered Expression [62]
CDH13 OTD2CYM5 Strong Biomarker [63]
CDH17 OT9EV2XK Strong Altered Expression [19]
CDO1 OTLG1P77 Strong Posttranslational Modification [64]
CEP72 OTVYNPNL Strong Genetic Variation [16]
CHST11 OTNJJ5Q1 Strong Biomarker [65]
CLDN2 OTRF3D6Y Strong Altered Expression [66]
COX2 OTTMVBJJ Strong Biomarker [67]
CYLD OT37FKH0 Strong Biomarker [68]
DAD1 OTUUNQBT Strong Biomarker [69]
EPC2 OTTG0W9R Strong Biomarker [70]
FABP6 OTIRQWLW Strong Biomarker [71]
FNDC3B OTBILGDR Strong Biomarker [72]
FOXA3 OTRGT2OT Strong Altered Expression [73]
FOXF1 OT2CJZ5K Strong Genetic Variation [74]
FRZB OTTO3DPY Strong Posttranslational Modification [75]
GDF7 OTNZY74B Strong Genetic Variation [76]
GKN1 OT7ZYFQ9 Strong Biomarker [77]
GNL3 OTILGYO4 Strong Biomarker [78]
GOLM1 OTOZSV6O Strong Biomarker [79]
GPX7 OTINT9Z4 Strong Altered Expression [80]
GRB7 OTF8Y9XY Strong Genetic Variation [81]
HAS2 OTTD3PAL Strong Altered Expression [65]
HGD OTTKLQOO Strong Biomarker [82]
HOXB6 OT3TFQ0U Strong Altered Expression [83]
HOXB7 OTC7WYU8 Strong Altered Expression [83]
HTR3C OT65ZLIJ Strong Genetic Variation [16]
ICAM2 OT3E070F Strong Biomarker [84]
ICAM3 OTTZ5A5D Strong Biomarker [84]
IFNK OTO2WDPX Strong Biomarker [85]
IGF2BP3 OTB97VIK Strong Biomarker [86]
IKBIP OTVFQEPA Strong Genetic Variation [37]
ITLN1 OT7ZLJVV Strong Biomarker [87]
KLF5 OT1ABI9N Strong Biomarker [88]
KRT14 OTUVZ1DW Strong Altered Expression [89]
MAL OTBM30SW Strong Posttranslational Modification [90]
MCC OTQVI1EM Strong Genetic Variation [91]
MICB OTS2DVDW Strong Biomarker [92]
MPG OTAHW80B Strong Altered Expression [93]
MSH5 OTDARQT3 Strong Biomarker [92]
MSX1 OT5U41ZP Strong Genetic Variation [94]
MUC3A OTI4XUDY Strong Biomarker [55]
MUC5B OTPW6K5C Strong Biomarker [9]
MUC6 OTPVL723 Strong Altered Expression [49]
MYO9B OTQ94R5K Strong Genetic Variation [95]
NET1 OTZHNMJV Strong Biomarker [96]
NOX5 OTHTH59G Strong Biomarker [36]
OMA1 OT0JRVY7 Strong Biomarker [97]
OR12D3 OTQ9XNBB Strong Genetic Variation [16]
OR5V1 OTSYXOD6 Strong Genetic Variation [16]
PCGF5 OTDF5C72 Strong Altered Expression [98]
PIGA OT51UWUR Strong Genetic Variation [99]
PKP1 OT9HSQ8F Strong Posttranslational Modification [100]
PPIE OTIE5OAD Strong Genetic Variation [101]
QRSL1 OTJDU2UG Strong Biomarker [102]
RABEP2 OTO61X27 Strong Genetic Variation [103]
RBP1 OTRP1MFC Strong Biomarker [104]
RELA OTUJP9CN Strong Altered Expression [105]
RFC3 OT1MS7AO Strong Biomarker [106]
RIN2 OTCY73U9 Strong Biomarker [21]
RNF11 OTFBJSKQ Strong Altered Expression [98]
RNF121 OTA0YMLW Strong Altered Expression [98]
RNF128 OTJO86CJ Strong Altered Expression [107]
RNF130 OT7DWTFH Strong Altered Expression [98]
RNF139 OT0PR1X5 Strong Altered Expression [98]
RNF14 OTWX0D0H Strong Altered Expression [98]
RNF141 OT07ANSG Strong Altered Expression [98]
RNF24 OTUZI597 Strong Altered Expression [98]
RNF32 OTFWOOIC Strong Altered Expression [98]
RPP21 OT53MDNE Strong Biomarker [92]
RPRM OTNNBAS1 Strong Biomarker [108]
S100A7 OTJFVJRF Strong Altered Expression [109]
SAFB OTGRV2LW Strong Biomarker [110]
SAGE1 OT4H6FFA Strong Altered Expression [111]
SKI OT4KJ8F6 Strong Altered Expression [112]
SKIL OTNBXH32 Strong Altered Expression [112]
SLC22A18 OT9C3KR4 Strong Biomarker [110]
SPAG11A OTNQ9UB0 Strong Altered Expression [35]
SPINK4 OTHTCW94 Strong Biomarker [87]
TAS2R13 OTSTOX5G Strong Altered Expression [113]
TBX5 OT70PISV Strong Genetic Variation [76]
TFF2 OTRXB19X Strong Biomarker [39]
TFF3 OTJJDRTU Strong Biomarker [114]
THEMIS OTXODBXJ Strong Biomarker [115]
TMEFF2 OT1WZ2QO Strong Posttranslational Modification [69]
TMOD1 OTTRYF9Y Strong Genetic Variation [16]
TPPP OTCFMSUF Strong Genetic Variation [16]
TREX1 OTQG7K12 Strong Biomarker [116]
TRIM31 OT7VW6RP Strong Altered Expression [98]
TRIM39 OTESLVP9 Strong Biomarker [92]
TSPAN18 OTHSGPVB Strong Biomarker [117]
TSPYL2 OTGGW2EF Strong Genetic Variation [118]
APOBEC1 OTY8QX2R Definitive Altered Expression [119]
------------------------------------------------------------------------------------
⏷ Show the Full List of 116 DOT(s)

References

1 The hERG1 Potassium Channel Behaves As Prognostic Factor In Gastric Dysplasia Endoscopic Samples.Onco Targets Ther. 2019 Nov 7;12:9377-9384. doi: 10.2147/OTT.S226257. eCollection 2019.
2 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
3 Acidic Bile Salts Induce Epithelial to Mesenchymal Transition via VEGF Signaling in Non-Neoplastic Barrett's Cells.Gastroenterology. 2019 Jan;156(1):130-144.e10. doi: 10.1053/j.gastro.2018.09.046. Epub 2018 Sep 27.
4 Relationships of CDXs and apical sodium-dependent bile acid transporter in Barrett's esophagus.World J Gastroenterol. 2013 May 14;19(18):2736-9. doi: 10.3748/wjg.v19.i18.2736.
5 The deposition of anti-DNA IgG contributes to the development of cutaneous lupus erythematosus.Immunol Lett. 2017 Nov;191:1-9. doi: 10.1016/j.imlet.2017.09.003. Epub 2017 Sep 9.
6 BMP4 Signaling Is Able to Induce an Epithelial-Mesenchymal Transition-Like Phenotype in Barrett's Esophagus and Esophageal Adenocarcinoma through Induction of SNAIL2.PLoS One. 2016 May 18;11(5):e0155754. doi: 10.1371/journal.pone.0155754. eCollection 2016.
7 Cyclin A immunocytology as a risk stratification tool for Barrett's esophagus surveillance.Clin Cancer Res. 2007 Jan 15;13(2 Pt 1):659-65. doi: 10.1158/1078-0432.CCR-06-1385.
8 Characterization of squamous esophageal cells resistant to bile acids at acidic pH: implication for Barrett's esophagus pathogenesis. Am J Physiol Gastrointest Liver Physiol. 2011 Feb;300(2):G292-302.
9 Elucidation of the AGR2 Interactome in Esophageal Adenocarcinoma Cells Identifies a Redox-Sensitive Chaperone Hub for the Quality Control of MUC-5AC.Antioxid Redox Signal. 2019 Nov 20;31(15):1117-1132. doi: 10.1089/ars.2018.7647. Epub 2019 Sep 25.
10 Gene expression profile comparison of Barrett's esophagus epithelial cell cultures and biopsies.Dis Esophagus. 2008;21(7):628-33. doi: 10.1111/j.1442-2050.2008.00810.x. Epub 2008 Apr 22.
11 Gastroesophageal reflux GWAS identifies risk loci that also associate with subsequent severe esophageal diseases.Nat Commun. 2019 Sep 16;10(1):4219. doi: 10.1038/s41467-019-11968-2.
12 Esomeprazole and aspirin in Barrett's oesophagus (AspECT): a randomised factorial trial.Lancet. 2018 Aug 4;392(10145):400-408. doi: 10.1016/S0140-6736(18)31388-6. Epub 2018 Jul 26.
13 The decreased expression of Beclin-1 correlates with progression to esophageal adenocarcinoma: the role of deoxycholic acid.Am J Physiol Gastrointest Liver Physiol. 2012 Apr 15;302(8):G864-72. doi: 10.1152/ajpgi.00340.2011. Epub 2012 Feb 2.
14 Differential expression of the MAD2, BUB1 and HSP27 genes in Barrett's oesophagus-their association with aneuploidy and neoplastic progression.Mutat Res. 2004 Mar 22;547(1-2):133-44. doi: 10.1016/j.mrfmmm.2003.12.009.
15 CD1a expression by Barrett's metaplasia of gastric type may help to predict its evolution towards cancer.Br J Cancer. 2005 Mar 14;92(5):888-90. doi: 10.1038/sj.bjc.6602415.
16 Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis.Lancet Oncol. 2016 Oct;17(10):1363-1373. doi: 10.1016/S1470-2045(16)30240-6. Epub 2016 Aug 12.
17 How good is the neosquamous epithelium?.Dig Dis. 2014;32(1-2):164-70. doi: 10.1159/000357185. Epub 2014 Feb 28.
18 High Expression of Cathepsin E in Tissues but Not Blood of Patients with Barrett's Esophagus and Adenocarcinoma.Ann Surg Oncol. 2015 Jul;22(7):2431-8. doi: 10.1245/s10434-014-4155-y. Epub 2014 Oct 28.
19 FABP1 and Hepar expression levels in Barrett's esophagus and associated neoplasia in an Asian population.Dig Liver Dis. 2017 Oct;49(10):1104-1109. doi: 10.1016/j.dld.2017.06.014. Epub 2017 Jul 27.
20 Proton Pump Inhibitors and Radiofrequency Ablation for Treatment of Barrett's Esophagus.Mini Rev Med Chem. 2020;20(11):975-987. doi: 10.2174/1389557519666191015203636.
21 DNA methylation as an adjunct to histopathology to detect prevalent, inconspicuous dysplasia and early-stage neoplasia in Barrett's esophagus.Clin Cancer Res. 2013 Feb 15;19(4):878-88. doi: 10.1158/1078-0432.CCR-12-2880. Epub 2012 Dec 14.
22 Activation of NFkappaB represents the central event in the neoplastic progression associated with Barrett's esophagus: a possible link to the inflammation and overexpression of COX-2, PPARgamma and growth factors. Dig Dis Sci. 2004 Aug;49(7-8):1075-83. doi: 10.1023/b:ddas.0000037790.11724.70.
23 A population-based study of IGF axis polymorphisms and the esophageal inflammation, metaplasia, adenocarcinoma sequence.Gastroenterology. 2010 Jul;139(1):204-12.e3. doi: 10.1053/j.gastro.2010.04.014. Epub 2010 Apr 24.
24 Genes of the interleukin-18 pathway are associated with susceptibility to Barrett's esophagus and esophageal adenocarcinoma.Am J Gastroenterol. 2012 Sep;107(9):1331-41. doi: 10.1038/ajg.2012.134. Epub 2012 Jun 5.
25 Association between idiopathic achalasia and IL23R gene.Neurogastroenterol Motil. 2010 Jul;22(7):734-8, e218. doi: 10.1111/j.1365-2982.2010.01497.x. Epub 2010 Mar 31.
26 The immune cell composition in Barrett's metaplastic tissue resembles that in normal duodenal tissue.PLoS One. 2012;7(4):e33899. doi: 10.1371/journal.pone.0033899. Epub 2012 Apr 3.
27 Polymorphisms in genes in the androgen pathway and risk of Barrett's esophagus and esophageal adenocarcinoma.Int J Cancer. 2016 Mar 1;138(5):1146-52. doi: 10.1002/ijc.29863. Epub 2015 Oct 5.
28 Mucosal-Associated Invariant T Cells Display Diminished Effector Capacity in Oesophageal Adenocarcinoma.Front Immunol. 2019 Jul 10;10:1580. doi: 10.3389/fimmu.2019.01580. eCollection 2019.
29 The Microenvironment in Barrett's Esophagus Tissue Is Characterized by High FOXP3 and RALDH2 Levels.Front Immunol. 2018 Jun 18;9:1375. doi: 10.3389/fimmu.2018.01375. eCollection 2018.
30 Germline mutations in MSR1, ASCC1, and CTHRC1 in patients with Barrett esophagus and esophageal adenocarcinoma.JAMA. 2011 Jul 27;306(4):410-9. doi: 10.1001/jama.2011.1029.
31 Mucin gene expression in Barrett's oesophagus: an in situ hybridisation and immunohistochemical study.Gut. 2000 Dec;47(6):753-61. doi: 10.1136/gut.47.6.753.
32 Hepatocyte Antigen Expression in Barrett Esophagus and Associated Neoplasia.Appl Immunohistochem Mol Morphol. 2018 Sep;26(8):557-561. doi: 10.1097/PAI.0000000000000491.
33 Gastric proteases in Barrett's esophagus.Gastroenterology. 1987 Oct;93(4):774-8. doi: 10.1016/0016-5085(87)90439-2.
34 Enhanced PPAR-gamma expression may correlate with the development of Barrett's esophagus and esophageal adenocarcinoma.Oncol Res. 2011;19(3-4):141-7. doi: 10.3727/096504011x12935427587849.
35 Prostaglandin EP2 receptor expression is increased in Barrett's oesophagus and oesophageal adenocarcinoma.Aliment Pharmacol Ther. 2010 Feb 1;31(3):440-51. doi: 10.1111/j.1365-2036.2009.04172.x. Epub 2009 Oct 16.
36 Effect of Proton Pump Inhibitor Therapy on NOX5, mPGES1 and iNOS expression in Barrett's Esophagus.Sci Rep. 2019 Nov 7;9(1):16242. doi: 10.1038/s41598-019-52800-7.
37 Interactions Between Genetic Variants and Environmental Factors Affect Risk of Esophageal Adenocarcinoma and Barrett's Esophagus.Clin Gastroenterol Hepatol. 2018 Oct;16(10):1598-1606.e4. doi: 10.1016/j.cgh.2018.03.007. Epub 2018 Mar 15.
38 Hypermethylation of the somatostatin promoter is a common, early event in human esophageal carcinogenesis. Cancer. 2008 Jan 1;112(1):43-9. doi: 10.1002/cncr.23135.
39 Possible application of trefoil factor family peptides in gastroesophageal reflux and Barrett's esophagus.Peptides. 2019 May;115:27-31. doi: 10.1016/j.peptides.2019.02.007. Epub 2019 Mar 1.
40 Aneusomy detected by fluorescence in-situ hybridization has high positive predictive value for Barrett's dysplasia.Histopathology. 2015 Oct;67(4):451-6. doi: 10.1111/his.12679. Epub 2015 Apr 27.
41 A novel role for the retinoic acid-catabolizing enzyme CYP26A1 in Barrett's associated adenocarcinoma. Oncogene. 2008 May 8;27(21):2951-60.
42 Proteomic screening of a cell line model of esophageal carcinogenesis identifies cathepsin D and aldo-keto reductase 1C2 and 1B10 dysregulation in Barrett's esophagus and esophageal adenocarcinoma.J Proteome Res. 2008 May;7(5):1953-62. doi: 10.1021/pr7007835. Epub 2008 Apr 9.
43 Germline variation in inflammation-related pathways and risk of Barrett's oesophagus and oesophageal adenocarcinoma.Gut. 2017 Oct;66(10):1739-1747. doi: 10.1136/gutjnl-2016-311622. Epub 2016 Aug 2.
44 Detection of Barrett's adenocarcinoma of the gastric cardia with sucrase isomaltase and p53.Ann Thorac Surg. 1996 Nov;62(5):1460-5; discussion 1465-6. doi: 10.1016/0003-4975(96)00749-7.
45 Oesophageal adenocarcinoma is associated with a deregulation in the MYC/MAX/MAD network.Br J Cancer. 2008 Jun 17;98(12):1985-92. doi: 10.1038/sj.bjc.6604398. Epub 2008 May 20.
46 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
47 Analysis of a new begomovirus unveils a composite element conserved in the CP gene promoters of several Geminiviridae genera: Clues to comprehend the complex regulation of late genes.PLoS One. 2019 Jan 23;14(1):e0210485. doi: 10.1371/journal.pone.0210485. eCollection 2019.
48 Overview of major molecular alterations during progression from Barrett's esophagus to esophageal adenocarcinoma.Ann N Y Acad Sci. 2016 Oct;1381(1):74-91. doi: 10.1111/nyas.13134. Epub 2016 Jul 14.
49 Cdx2 expression and its promoter methylation during metaplasia-dysplasia-carcinoma sequence in Barrett's esophagus.World J Gastroenterol. 2013 Jan 28;19(4):536-41. doi: 10.3748/wjg.v19.i4.536.
50 Hypersensitive IFN Responses in Lupus Keratinocytes Reveal Key Mechanistic Determinants in Cutaneous Lupus.J Immunol. 2019 Apr 1;202(7):2121-2130. doi: 10.4049/jimmunol.1800650. Epub 2019 Feb 11.
51 Study of FoxA pioneer factor at silent genes reveals Rfx-repressed enhancer at Cdx2 and a potential indicator of esophageal adenocarcinoma development.PLoS Genet. 2011 Sep;7(9):e1002277. doi: 10.1371/journal.pgen.1002277. Epub 2011 Sep 15.
52 TWEAK/Fn14 Activation Participates in Ro52-Mediated Photosensitization in Cutaneous Lupus Erythematosus.Front Immunol. 2017 May 31;8:651. doi: 10.3389/fimmu.2017.00651. eCollection 2017.
53 Frequent methylation of eyes absent 4 gene in Barrett's esophagus and esophageal adenocarcinoma.Cancer Epidemiol Biomarkers Prev. 2005 Apr;14(4):830-4. doi: 10.1158/1055-9965.EPI-04-0506.
54 Adiponectin and leptin receptors expression in Barrett's esophagus and normal squamous epithelium in relation to central obesity status.J Physiol Pharmacol. 2013 Apr;64(2):193-9.
55 Math1/Atoh1 contributes to intestinalization of esophageal keratinocytes by inducing the expression of Muc2 and Keratin-20.Dig Dis Sci. 2012 Apr;57(4):845-57. doi: 10.1007/s10620-011-1998-y. Epub 2011 Dec 7.
56 Whole genome expression array profiling highlights differences in mucosal defense genes in Barrett's esophagus and esophageal adenocarcinoma.PLoS One. 2011;6(7):e22513. doi: 10.1371/journal.pone.0022513. Epub 2011 Jul 28.
57 Methylated B3GAT2 and ZNF793 Are Potential Detection Biomarkers for Barrett's Esophagus.Cancer Epidemiol Biomarkers Prev. 2015 Dec;24(12):1890-7. doi: 10.1158/1055-9965.EPI-15-0370. Epub 2015 Nov 6.
58 A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett's esophagus.Nat Genet. 2013 Dec;45(12):1487-93. doi: 10.1038/ng.2796. Epub 2013 Oct 13.
59 Risk stratification of Barrett's oesophagus using a non-endoscopic sampling method coupled with a biomarker panel: a cohort study.Lancet Gastroenterol Hepatol. 2017 Jan;2(1):23-31. doi: 10.1016/S2468-1253(16)30118-2. Epub 2016 Nov 11.
60 Barrett's oESophagus trial 3 (BEST3): study protocol for a randomised controlled trial comparing the Cytosponge-TFF3 test with usual care to facilitate the diagnosis of oesophageal pre-cancer in primary care patients with chronic acid reflux.BMC Cancer. 2018 Aug 3;18(1):784. doi: 10.1186/s12885-018-4664-3.
61 Chromosomal abnormalities and novel disease-related regions in progression from Barrett's esophagus to esophageal adenocarcinoma.Int J Cancer. 2009 Nov 15;125(10):2349-59. doi: 10.1002/ijc.24620.
62 Evaluation of Serum Glycoprotein Biomarker Candidates for Detection of Esophageal Adenocarcinoma and Surveillance of Barrett's Esophagus.Mol Cell Proteomics. 2018 Dec;17(12):2324-2334. doi: 10.1074/mcp.RA118.000734. Epub 2018 Aug 10.
63 Promoter hypermethylation of CDH13 is a common, early event in human esophageal adenocarcinogenesis and correlates with clinical risk factors.Int J Cancer. 2008 Nov 15;123(10):2331-6. doi: 10.1002/ijc.23804.
64 The clinical significance of cysteine dioxygenase type 1 methylation in Barrett esophagus adenocarcinoma.Dis Esophagus. 2017 Mar 1;30(3):1-9. doi: 10.1093/dote/dow001.
65 Identification and molecular analysis of glycosaminoglycans in cutaneous lupus erythematosus and dermatomyositis.J Histochem Cytochem. 2011 Mar;59(3):336-45. doi: 10.1369/0022155410398000. Epub 2011 Jan 12.
66 High expression of Claudin-2 in esophageal carcinoma and precancerous lesions is significantly associated with the bile salt receptors VDR and TGR5.BMC Gastroenterol. 2017 Feb 17;17(1):33. doi: 10.1186/s12876-017-0590-0.
67 Toll-like receptor 4 activation in Barrett's esophagus results in a strong increase in COX-2 expression.J Gastroenterol. 2014 Jul;49(7):1121-34. doi: 10.1007/s00535-013-0862-6. Epub 2013 Aug 17.
68 Genome-wide tracts of homozygosity and exome analyses reveal repetitive elements with Barrets esophagus/esophageal adenocarcinoma risk.BMC Bioinformatics. 2019 Mar 14;20(Suppl 2):98. doi: 10.1186/s12859-019-2622-y.
69 Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk.Oncogene. 2005 Jun 9;24(25):4138-48. doi: 10.1038/sj.onc.1208598.
70 Response to TNF- Is Increasing Along with the Progression in Barrett's Esophagus.Dig Dis Sci. 2017 Dec;62(12):3391-3401. doi: 10.1007/s10620-017-4821-6. Epub 2017 Oct 30.
71 Expression of bile acid transporting proteins in Barrett's esophagus and esophageal adenocarcinoma.Am J Gastroenterol. 2009 Feb;104(2):302-9. doi: 10.1038/ajg.2008.85. Epub 2009 Jan 27.
72 Bioinformatic analyses of microRNA-targeted genes and microarray-identified genes correlated with Barrett's esophagus.Cell Cycle. 2018;17(6):792-800. doi: 10.1080/15384101.2018.1431597.
73 Upregulated forkhead-box A3 elevates the expression of forkhead-box A1 and forkhead-box A2 to promote metastasis in esophageal cancer.Oncol Lett. 2019 May;17(5):4351-4360. doi: 10.3892/ol.2019.10078. Epub 2019 Feb 26.
74 Polymorphisms of the FOXF1 and MHC locus genes in individuals undergoing esophageal acid reflux assessments.Dis Esophagus. 2017 Feb 1;30(2):1-7. doi: 10.1111/dote.12456.
75 Aberrant methylation of secreted frizzled-related protein genes in esophageal adenocarcinoma and Barrett's esophagus.Int J Cancer. 2005 Sep 10;116(4):584-91. doi: 10.1002/ijc.21045.
76 The Barrett-associated variants at GDF7 and TBX5 also increase esophageal adenocarcinoma risk.Cancer Med. 2016 May;5(5):888-91. doi: 10.1002/cam4.641. Epub 2016 Jan 18.
77 Gastrokine 1 is abundantly and specifically expressed in superficial gastric epithelium, down-regulated in gastric carcinoma, and shows high evolutionary conservation.J Pathol. 2004 Jul;203(3):789-97. doi: 10.1002/path.1583.
78 Inhibition of nucleostemin upregulates CDX2 expression in HT29 cells in response to bile acid exposure: implications in the pathogenesis of Barrett's esophagus.J Gastrointest Surg. 2009 Aug;13(8):1430-9. doi: 10.1007/s11605-009-0899-2. Epub 2009 May 16.
79 Golgi phosphoprotein 2 (GOLPH2) is a novel bile acid-responsive modulator of oesophageal cell migration and invasion.Br J Cancer. 2015 Nov 3;113(9):1332-42. doi: 10.1038/bjc.2015.350. Epub 2015 Oct 13.
80 Glutathione peroxidase 7 protects against oxidative DNA damage in oesophageal cells.Gut. 2012 Sep;61(9):1250-60. doi: 10.1136/gutjnl-2011-301078. Epub 2011 Dec 9.
81 Coamplification and coexpression of GRB7 and ERBB2 is found in high grade intraepithelial neoplasia and in invasive Barrett's carcinoma.Int J Cancer. 2004 Dec 10;112(5):747-53. doi: 10.1002/ijc.20411.
82 A cost-effectiveness analysis of endoscopic eradication therapy for management of dysplasia arising in patients with Barrett's oesophagus in the United Kingdom.Curr Med Res Opin. 2019 May;35(5):805-815. doi: 10.1080/03007995.2018.1552407. Epub 2019 Jan 3.
83 Evidence for a functional role of epigenetically regulated midcluster HOXB genes in the development of Barrett esophagus.Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9077-82. doi: 10.1073/pnas.1116933109. Epub 2012 May 17.
84 Investigation of intercellular adhesion molecules (ICAMs) gene expressions in patients with Barrett's esophagus.Tumour Biol. 2014 May;35(5):4907-12. doi: 10.1007/s13277-014-1644-3. Epub 2014 Jan 29.
85 Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa.Ann Rheum Dis. 2018 Nov;77(11):1653-1664. doi: 10.1136/annrheumdis-2018-213197. Epub 2018 Jul 18.
86 Gain of allelic gene expression for IGF-II occurs frequently in Barrett's esophagus.Am J Physiol Gastrointest Liver Physiol. 2006 May;290(5):G871-5. doi: 10.1152/ajpgi.00383.2005. Epub 2005 Dec 8.
87 Single cell RNA-seq reveals profound transcriptional similarity between Barrett's oesophagus and oesophageal submucosal glands.Nat Commun. 2018 Oct 15;9(1):4261. doi: 10.1038/s41467-018-06796-9.
88 Krppel-like Factor 5 Promotes Sonic Hedgehog Signaling and Neoplasia in Barrett's Esophagus and Esophageal Adenocarcinoma.Transl Oncol. 2019 Nov;12(11):1432-1441. doi: 10.1016/j.tranon.2019.07.006. Epub 2019 Aug 8.
89 MicroRNA-143 and -205 expression in neosquamous esophageal epithelium following Argon plasma ablation of Barrett's esophagus.J Gastrointest Surg. 2009 May;13(5):846-53. doi: 10.1007/s11605-009-0799-5. Epub 2009 Feb 4.
90 MAL hypermethylation is a tissue-specific event that correlates with MAL mRNA expression in esophageal carcinoma.Sci Rep. 2013 Oct 3;3:2838. doi: 10.1038/srep02838.
91 Allelic loss involving the tumor suppressor genes APC and MCC and expression of the APC protein in the development of dysplasia and carcinoma in Barrett esophagus.Am J Clin Pathol. 2000 Dec;114(6):890-5. doi: 10.1309/L1Q3-E3AQ-APU9-NA0A.
92 Genome-wide association study identifies new susceptibility loci for cutaneous lupus erythematosus.Exp Dermatol. 2015 Jul;24(7):510-5. doi: 10.1111/exd.12708. Epub 2015 May 4.
93 Diagnostic correlation between the expression of the DNA repair enzyme N-methylpurine DNA glycosylase and esophageal adenocarcinoma onset: a retrospective pilot study.Dis Esophagus. 2013 Aug;26(6):644-50. doi: 10.1111/dote.12003. Epub 2012 Nov 8.
94 Germline variant in MSX1 identified in a Dutch family with clustering of Barrett's esophagus and esophageal adenocarcinoma.Fam Cancer. 2018 Jul;17(3):435-440. doi: 10.1007/s10689-017-0054-2.
95 Myo9B is associated with an increased risk of Barrett's esophagus and esophageal adenocarcinoma.Scand J Gastroenterol. 2012 Dec;47(12):1422-8. doi: 10.3109/00365521.2012.722673. Epub 2012 Sep 7.
96 Expression of neuroepithelial transforming gene 1 is enhanced in oesophageal cancer and mediates an invasive tumour cell phenotype.J Exp Clin Cancer Res. 2013 Aug 14;32(1):55. doi: 10.1186/1756-9966-32-55.
97 Genome-wide methylation analysis shows similar patterns in Barrett's esophagus and esophageal adenocarcinoma.Carcinogenesis. 2013 Dec;34(12):2750-6. doi: 10.1093/carcin/bgt286. Epub 2013 Aug 29.
98 RING finger proteins are involved in the progression of barrett esophagus to esophageal adenocarcinoma: a preliminary study.Gut Liver. 2014 Sep;8(5):487-94. doi: 10.5009/gnl13133. Epub 2014 Feb 24.
99 Developing a blood-based gene mutation assay as a novel biomarker for oesophageal adenocarcinoma.Sci Rep. 2019 Mar 26;9(1):5168. doi: 10.1038/s41598-019-41490-w.
100 Aberrantly methylated PKP1 in the progression of Barrett's esophagus to esophageal adenocarcinoma.Genes Chromosomes Cancer. 2012 Apr;51(4):384-93. doi: 10.1002/gcc.21923. Epub 2011 Dec 14.
101 Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus.Oncogene. 2014 Jan 16;33(3):347-57. doi: 10.1038/onc.2012.586. Epub 2013 Jan 14.
102 GATA factors in gastrointestinal malignancy.World J Surg. 2011 Aug;35(8):1757-65. doi: 10.1007/s00268-010-0950-1.
103 Deletion at fragile sites is a common and early event in Barrett's esophagus.Mol Cancer Res. 2010 Aug;8(8):1084-94. doi: 10.1158/1541-7786.MCR-09-0529. Epub 2010 Jul 20.
104 Similarity of aberrant DNA methylation in Barrett's esophagus and esophageal adenocarcinoma.Mol Cancer. 2008 Oct 2;7:75. doi: 10.1186/1476-4598-7-75.
105 Strong NFB Expression is Associated With High-grade Dysplasia in Barrett's Esophagus.Appl Immunohistochem Mol Morphol. 2017 May/Jun;25(5):329-333. doi: 10.1097/PAI.0000000000000359.
106 Integrative genomics identified RFC3 as an amplified candidate oncogene in esophageal adenocarcinoma.Clin Cancer Res. 2012 Apr 1;18(7):1936-46. doi: 10.1158/1078-0432.CCR-11-1431. Epub 2012 Feb 10.
107 Isoforms of RNF128 Regulate the Stability of Mutant P53 in Barrett's Esophageal Cells.Gastroenterology. 2020 Feb;158(3):583-597.e1. doi: 10.1053/j.gastro.2019.10.040. Epub 2019 Nov 9.
108 Reprimo methylation is a potential biomarker of Barrett's-Associated esophageal neoplastic progression.Clin Cancer Res. 2006 Nov 15;12(22):6637-42. doi: 10.1158/1078-0432.CCR-06-1781.
109 Expression of antimicrobial peptides in different subtypes of cutaneous lupus erythematosus.J Am Acad Dermatol. 2011 Jul;65(1):125-33. doi: 10.1016/j.jaad.2010.12.012. Epub 2011 Feb 25.
110 Deoxycholic acid promotes development of gastroesophageal reflux disease and Barrett's oesophagus by modulating integrin-v trafficking.J Cell Mol Med. 2017 Dec;21(12):3612-3625. doi: 10.1111/jcmm.13271. Epub 2017 Sep 22.
111 A comparative analysis by SAGE of gene expression profiles of Barrett's esophagus, normal squamous esophagus, and gastric cardia.Gastroenterology. 2005 Oct;129(4):1274-81. doi: 10.1053/j.gastro.2005.07.026.
112 Ski/SnoN expression in the sequence metaplasia-dysplasia-adenocarcinoma of Barrett's esophagus.Hum Pathol. 2008 Mar;39(3):403-9. doi: 10.1016/j.humpath.2007.07.009.
113 An integrative genomic approach in oesophageal cells identifies TRB3 as a bile acid responsive gene, downregulated in Barrett's oesophagus, which regulates NF-kappaB activation and cytokine levels.Carcinogenesis. 2010 May;31(5):936-45. doi: 10.1093/carcin/bgq036. Epub 2010 Feb 5.
114 Role of TFF3 as an adjunct in the diagnosis of Barrett's esophagus using a minimally invasive esophageal sampling device-The Cytosponge(TM).Diagn Cytopathol. 2020 Mar;48(3):253-264. doi: 10.1002/dc.24354. Epub 2019 Dec 9.
115 Efficient automated assessment of genetic abnormalities detected by fluorescence in situ hybridization on brush cytology in a Barrett esophagus surveillance population.Cancer. 2007 May 15;109(10):1980-8. doi: 10.1002/cncr.22643.
116 Immunostimulatory Endogenous Nucleic Acids Drive the Lesional Inflammation in Cutaneous Lupus Erythematosus.J Invest Dermatol. 2017 Jul;137(7):1484-1492. doi: 10.1016/j.jid.2017.03.018. Epub 2017 Mar 27.
117 Accurate discrimination of Barrett's esophagus and esophageal adenocarcinoma using a quantitative three-tiered algorithm and multimarker real-time reverse transcription-PCR.Clin Cancer Res. 2005 Mar 15;11(6):2205-14. doi: 10.1158/1078-0432.CCR-04-1091.
118 Haplotypes of the IL-1 gene cluster are associated with gastroesophageal reflux disease and Barrett's esophagus.Hum Immunol. 2013 Sep;74(9):1161-9. doi: 10.1016/j.humimm.2013.06.026. Epub 2013 Jun 24.
119 The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas.Genome Biol. 2014 Jul 31;15(7):417. doi: 10.1186/s13059-014-0417-z.