General Information of Drug Off-Target (DOT) (ID: OT67U7G3)

DOT Name Sodium- and chloride-dependent taurine transporter (SLC6A6)
Synonyms Solute carrier family 6 member 6
Gene Name SLC6A6
Related Disease
Hypotaurinemic retinal degeneration and cardiomyopathy ( )
UniProt ID
SC6A6_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00209
Sequence
MATKEKLQCLKDFHKDILKPSPGKSPGTRPEDEAEGKPPQREKWSSKIDFVLSVAGGFVG
LGNVWRFPYLCYKNGGGAFLIPYFIFLFGSGLPVFFLEIIIGQYTSEGGITCWEKICPLF
SGIGYASVVIVSLLNVYYIVILAWATYYLFQSFQKELPWAHCNHSWNTPHCMEDTMRKNK
SVWITISSTNFTSPVIEFWERNVLSLSPGIDHPGSLKWDLALCLLLVWLVCFFCIWKGVR
STGKVVYFTATFPFAMLLVLLVRGLTLPGAGAGIKFYLYPDITRLEDPQVWIDAGTQIFF
SYAICLGAMTSLGSYNKYKYNSYRDCMLLGCLNSGTSFVSGFAIFSILGFMAQEQGVDIA
DVAESGPGLAFIAYPKAVTMMPLPTFWSILFFIMLLLLGLDSQFVEVEGQITSLVDLYPS
FLRKGYRREIFIAFVCSISYLLGLTMVTEGGMYVFQLFDYYAASGVCLLWVAFFECFVIA
WIYGGDNLYDGIEDMIGYRPGPWMKYSWAVITPVLCVGCFIFSLVKYVPLTYNKTYVYPN
WAIGLGWSLALSSMLCVPLVIVIRLCQTEGPFLVRVKYLLTPREPNRWAVEREGATPYNS
RTVMNGALVKPTHIIVETMM
Function
Mediates sodium- and chloride-dependent transport of taurine. Mediates transport of beta-alanine. Can also mediate transport of hypotaurine and gamma-aminobutyric acid (GABA); Sodium-dependent taurine and beta-alanine transporter. Chloride ions are necessary for optimal uptake.
Tissue Specificity Expressed abundantly in placenta and skeletal muscle, at intermediate levels in heart, brain, lung, kidney and pancreas and at low levels in liver.
Reactome Pathway
Na+/Cl- dependent neurotransmitter transporters (R-HSA-442660 )
Amino acid transport across the plasma membrane (R-HSA-352230 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hypotaurinemic retinal degeneration and cardiomyopathy DIS7UKI2 Limited Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Sodium- and chloride-dependent taurine transporter (SLC6A6). [2]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Sodium- and chloride-dependent taurine transporter (SLC6A6). [9]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Sodium- and chloride-dependent taurine transporter (SLC6A6). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Sodium- and chloride-dependent taurine transporter (SLC6A6). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Sodium- and chloride-dependent taurine transporter (SLC6A6). [13]
------------------------------------------------------------------------------------
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [8]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [10]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [11]
Marinol DM70IK5 Approved Marinol decreases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [12]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [14]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [15]
Dasatinib DMJV2EK Approved Dasatinib increases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [16]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [17]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol decreases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [18]
Cidofovir DMA13GD Approved Cidofovir affects the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [3]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [21]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Sodium- and chloride-dependent taurine transporter (SLC6A6). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
4 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
5 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
8 Bisphenol-A and estradiol exert novel gene regulation in human MCF-7 derived breast cancer cells. Mol Cell Endocrinol. 2004 Jun 30;221(1-2):47-55. doi: 10.1016/j.mce.2004.04.010.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
13 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
14 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
15 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
16 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
17 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
18 The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol. Toxicol Sci. 2009 Jan;107(1):40-55.
19 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
22 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.