General Information of Drug Off-Target (DOT) (ID: OT6NTBAA)

DOT Name Lysophosphatidylcholine acyltransferase 2 (LPCAT2)
Synonyms
LPC acyltransferase 2; LPCAT-2; LysoPC acyltransferase 2; EC 2.3.1.23; 1-acylglycerol-3-phosphate O-acyltransferase 11; 1-AGP acyltransferase 11; 1-AGPAT 11; EC 2.3.1.51; 1-acylglycerophosphocholine O-acyltransferase; 1-alkenylglycerophosphocholine O-acyltransferase; EC 2.3.1.25; 1-alkylglycerophosphocholine O-acetyltransferase; EC 2.3.1.67; Acetyl-CoA:lyso-platelet-activating factor acetyltransferase; Acetyl-CoA:lyso-PAF acetyltransferase; Lyso-PAF acetyltransferase; LysoPAFAT; Acyltransferase-like 1; Lysophosphatidic acid acyltransferase alpha; LPAAT-alpha
Gene Name LPCAT2
Related Disease
Colorectal carcinoma ( )
Matthew-Wood syndrome ( )
Neuralgia ( )
Polycystic ovarian syndrome ( )
Prostate cancer ( )
Prostate carcinoma ( )
UniProt ID
PCAT2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.3.1.23; 2.3.1.25; 2.3.1.51; 2.3.1.67
Pfam ID
PF01553 ; PF13202 ; PF13499
Sequence
MSRCAQAAEVAATVPGAGVGNVGLRPPMVPRQASFFPPPVPNPFVQQTQIGSARRVQIVL
LGIILLPIRVLLVALILLLAWPFAAISTVCCPEKLTHPITGWRRKITQTALKFLGRAMFF
SMGFIVAVKGKIASPLEAPVFVAAPHSTFFDGIACVVAGLPSMVSRNENAQVPLIGRLLR
AVQPVLVSRVDPDSRKNTINEIIKRTTSGGEWPQILVFPEGTCTNRSCLITFKPGAFIPG
VPVQPVLLRYPNKLDTVTWTWQGYTFIQLCMLTFCQLFTKVEVEFMPVQVPNDEEKNDPV
LFANKVRNLMAEALGIPVTDHTYEDCRLMISAGQLTLPMEAGLVEFTKISRKLKLDWDGV
RKHLDEYASIASSSKGGRIGIEEFAKYLKLPVSDVLRQLFALFDRNHDGSIDFREYVIGL
AVLCNPSNTEEIIQVAFKLFDVDEDGYITEEEFSTILQASLGVPDLDVSGLFKEIAQGDS
ISYEEFKSFALKHPEYAKIFTTYLDLQTCHVFSLPKEVQTTPSTASNKVSPEKHEESTSD
KKDD
Function
Exhibits both acyltransferase and acetyltransferase activities. Catalyzes the conversion of lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC). Catalyzes the conversion 1-acyl-sn-glycerol-3-phosphate (lysophosphatidic acid or LPA) into 1,2-diacyl-sn-glycerol-3-phosphate (phosphatidic acid or PA) by incorporating an acyl moiety at the sn-2 position of the glycerol backbone. Involved in platelet-activating factor (PAF) biosynthesis by catalyzing the conversion of the PAF precursor, 1-O-alkyl-sn-glycero-3-phosphocholine (lyso-PAF) into 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF). Also converts lyso-PAF to 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (PC), a major component of cell membranes and a PAF precursor. Under resting conditions, acyltransferase activity is preferred. Upon acute inflammatory stimulus, acetyltransferase activity is enhanced and PAF synthesis increases. Involved in the regulation of lipid droplet number and size.
KEGG Pathway
Glycerophospholipid metabolism (hsa00564 )
Ether lipid metabolism (hsa00565 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Acyl chain remodelling of PC (R-HSA-1482788 )

Molecular Interaction Atlas (MIA) of This DOT

6 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Colorectal carcinoma DIS5PYL0 Strong Biomarker [1]
Matthew-Wood syndrome DISA7HR7 Strong Biomarker [2]
Neuralgia DISWO58J Strong Biomarker [3]
Polycystic ovarian syndrome DISZ2BNG Strong Biomarker [4]
Prostate cancer DISF190Y Limited Biomarker [5]
Prostate carcinoma DISMJPLE Limited Biomarker [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [14]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [7]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [8]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [9]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [10]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [11]
Triclosan DMZUR4N Approved Triclosan increases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [12]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [13]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [11]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [15]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [17]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [18]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [19]
Butanoic acid DMTAJP7 Investigative Butanoic acid increases the expression of Lysophosphatidylcholine acyltransferase 2 (LPCAT2). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance.Nat Commun. 2018 Jan 22;9(1):322. doi: 10.1038/s41467-017-02732-5.
2 Molecular pathogenesis of pancreatic ductal adenocarcinoma: Impact of passenger strand of pre-miR-148a on gene regulation.Cancer Sci. 2018 Jun;109(6):2013-2026. doi: 10.1111/cas.13610. Epub 2018 May 22.
3 Relief from neuropathic pain by blocking of the platelet-activating factor-pain loop.FASEB J. 2017 Jul;31(7):2973-2980. doi: 10.1096/fj.201601183R. Epub 2017 Mar 24.
4 Progesterone resistance in PCOS endometrium: a microarray analysis in clomiphene citrate-treated and artificial menstrual cycles.J Clin Endocrinol Metab. 2011 Jun;96(6):1737-46. doi: 10.1210/jc.2010-2600. Epub 2011 Mar 16.
5 A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes.PLoS Genet. 2014 Nov 20;10(11):e1004809. doi: 10.1371/journal.pgen.1004809. eCollection 2014 Nov.
6 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
7 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
13 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
17 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
18 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
19 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
20 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.