General Information of Drug Off-Target (DOT) (ID: OT7SQ1C7)

DOT Name Proline dehydrogenase 1, mitochondrial (PRODH)
Synonyms EC 1.5.5.2; Proline oxidase; Proline oxidase 2; p53-induced gene 6 protein
Gene Name PRODH
Related Disease
Hyperprolinemia type 1 ( )
UniProt ID
PROD_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.5.5.2
Pfam ID
PF01619
Sequence
MALRRALPALRPCIPRFVQLSTAPASREQPAAGPAAVPGGGSATAVRPPVPAVDFGNAQE
AYRSRRTWELARSLLVLRLCAWPALLARHEQLLYVSRKLLGQRLFNKLMKMTFYGHFVAG
EDQESIQPLLRHYRAFGVSAILDYGVEEDLSPEEAEHKEMESCTSAAERDGSGTNKRDKQ
YQAHRAFGDRRNGVISARTYFYANEAKCDSHMETFLRCIEASGRVSDDGFIAIKLTALGR
PQFLLQFSEVLAKWRCFFHQMAVEQGQAGLAAMDTKLEVAVLQESVAKLGIASRAEIEDW
FTAETLGVSGTMDLLDWSSLIDSRTKLSKHLVVPNAQTGQLEPLLSRFTEEEELQMTRML
QRMDVLAKKATEMGVRLMVDAEQTYFQPAISRLTLEMQRKFNVEKPLIFNTYQCYLKDAY
DNVTLDVELARREGWCFGAKLVRGAYLAQERARAAEIGYEDPINPTYEATNAMYHRCLDY
VLEELKHNAKAKVMVASHNEDTVRFALRRMEELGLHPADHQVYFGQLLGMCDQISFPLGQ
AGYPVYKYVPYGPVMEVLPYLSRRALENSSLMKGTHRERQLLWLELLRRLRTGNLFHRPA
Function Converts proline to delta-1-pyrroline-5-carboxylate.
Tissue Specificity Expressed in lung, skeletal muscle and brain, to a lesser extent in heart and kidney, and weakly in liver, placenta and pancreas.
KEGG Pathway
Arginine and proline metabolism (hsa00330 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Proline catabolism (R-HSA-70688 )
BioCyc Pathway
MetaCyc:HS01958-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hyperprolinemia type 1 DISSFNEV Definitive Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [8]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [9]
Testosterone DM7HUNW Approved Testosterone increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [9]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [10]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [11]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [12]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [13]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [14]
Menthol DMG2KW7 Approved Menthol increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [15]
Fenofibrate DMFKXDY Approved Fenofibrate decreases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [12]
Mifepristone DMGZQEF Approved Mifepristone decreases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [16]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [11]
Afimoxifene DMFORDT Phase 2 Afimoxifene decreases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [17]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [3]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [18]
UNC0379 DMD1E4J Preclinical UNC0379 increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [19]
Ciglitazone DMAPO0T Preclinical Ciglitazone increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [14]
15-deoxy-Delta(12, 14)-prostaglandin J(2) DM8VUX3 Investigative 15-deoxy-Delta(12, 14)-prostaglandin J(2) increases the expression of Proline dehydrogenase 1, mitochondrial (PRODH). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
9 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
10 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
11 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
12 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
13 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
14 Apoptotic action of peroxisome proliferator-activated receptor-gamma activation in human non small-cell lung cancer is mediated via proline oxidase-induced reactive oxygen species formation. Mol Pharmacol. 2007 Sep;72(3):674-85.
15 Repurposing L-menthol for systems medicine and cancer therapeutics? L-menthol induces apoptosis through caspase 10 and by suppressing HSP90. OMICS. 2016 Jan;20(1):53-64.
16 Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007 Sep;13(9):641-54.
17 Molecular mechanism of action of bisphenol and bisphenol A mediated by oestrogen receptor alpha in growth and apoptosis of breast cancer cells. Br J Pharmacol. 2013 May;169(1):167-78.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma. Cancer Cell. 2017 Jan 9;31(1):50-63.