General Information of Drug Off-Target (DOT) (ID: OTFCQ4B1)

DOT Name Sortilin (SORT1)
Synonyms 100 kDa NT receptor; Glycoprotein 95; Gp95; Neurotensin receptor 3; NT3; NTR3
Gene Name SORT1
UniProt ID
SORT_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3F6K; 3G2U; 3G2V; 4MSL; 4N7E; 4PO7; 5MRH; 5MRI; 6EHO; 6X3L; 6X48; 6X4H
Pfam ID
PF15902 ; PF15901
Sequence
MERPWGAADGLSRWPHGLGLLLLLQLLPPSTLSQDRLDAPPPPAAPLPRWSGPIGVSWGL
RAAAAGGAFPRGGRWRRSAPGEDEECGRVRDFVAKLANNTHQHVFDDLRGSVSLSWVGDS
TGVILVLTTFHVPLVIMTFGQSKLYRSEDYGKNFKDITDLINNTFIRTEFGMAIGPENSG
KVVLTAEVSGGSRGGRIFRSSDFAKNFVQTDLPFHPLTQMMYSPQNSDYLLALSTENGLW
VSKNFGGKWEEIHKAVCLAKWGSDNTIFFTTYANGSCKADLGALELWRTSDLGKSFKTIG
VKIYSFGLGGRFLFASVMADKDTTRRIHVSTDQGDTWSMAQLPSVGQEQFYSILAANDDM
VFMHVDEPGDTGFGTIFTSDDRGIVYSKSLDRHLYTTTGGETDFTNVTSLRGVYITSVLS
EDNSIQTMITFDQGGRWTHLRKPENSECDATAKNKNECSLHIHASYSISQKLNVPMAPLS
EPNAVGIVIAHGSVGDAISVMVPDVYISDDGGYSWTKMLEGPHYYTILDSGGIIVAIEHS
SRPINVIKFSTDEGQCWQTYTFTRDPIYFTGLASEPGARSMNISIWGFTESFLTSQWVSY
TIDFKDILERNCEEKDYTIWLAHSTDPEDYEDGCILGYKEQFLRLRKSSVCQNGRDYVVT
KQPSICLCSLEDFLCDFGYYRPENDSKCVEQPELKGHDLEFCLYGREEHLTTNGYRKIPG
DKCQGGVNPVREVKDLKKKCTSNFLSPEKQNSKSNSVPIILAIVGLMLVTVVAGVLIVKK
YVCGGRFLVHRYSVLQQHAEANGVDGVDALDTASHTNKSGYHDDSDEDLLE
Function
Functions as a sorting receptor in the Golgi compartment and as a clearance receptor on the cell surface. Required for protein transport from the Golgi apparatus to the lysosomes by a pathway that is independent of the mannose-6-phosphate receptor (M6PR). Lysosomal proteins bind specifically to the receptor in the Golgi apparatus and the resulting receptor-ligand complex is transported to an acidic prelysosomal compartment where the low pH mediates the dissociation of the complex. The receptor is then recycled back to the Golgi for another round of trafficking through its binding to the retromer. Also required for protein transport from the Golgi apparatus to the endosomes. Promotes neuronal apoptosis by mediating endocytosis of the proapoptotic precursor forms of BDNF (proBDNF) and NGFB (proNGFB). Also acts as a receptor for neurotensin. May promote mineralization of the extracellular matrix during osteogenic differentiation by scavenging extracellular LPL. Probably required in adipocytes for the formation of specialized storage vesicles containing the glucose transporter SLC2A4/GLUT4 (GLUT4 storage vesicles, or GSVs). These vesicles provide a stable pool of SLC2A4 and confer increased responsiveness to insulin. May also mediate transport from the endoplasmic reticulum to the Golgi.
Tissue Specificity
Expressed in brain and prostate (at protein level). Expressed at high levels in brain, spinal cord, heart, skeletal muscle, thyroid, placenta and testis. Expressed at lower levels in lymphoid organs, kidney, colon and liver.
KEGG Pathway
Lysosome (hsa04142 )
Neurotrophin sig.ling pathway (hsa04722 )
Cholesterol metabolism (hsa04979 )
Reactome Pathway
Golgi Associated Vesicle Biogenesis (R-HSA-432722 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 4 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Sortilin (SORT1) affects the response to substance of Doxorubicin. [19]
Etoposide DMNH3PG Approved Sortilin (SORT1) affects the response to substance of Etoposide. [19]
Mitomycin DMH0ZJE Approved Sortilin (SORT1) affects the response to substance of Mitomycin. [19]
Vinblastine DM5TVS3 Approved Sortilin (SORT1) affects the response to substance of Vinblastine. [19]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Sortilin (SORT1). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Sortilin (SORT1). [13]
------------------------------------------------------------------------------------
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Sortilin (SORT1). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Sortilin (SORT1). [3]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Sortilin (SORT1). [4]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Sortilin (SORT1). [5]
Testosterone DM7HUNW Approved Testosterone increases the expression of Sortilin (SORT1). [6]
Progesterone DMUY35B Approved Progesterone increases the expression of Sortilin (SORT1). [7]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Sortilin (SORT1). [8]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Sortilin (SORT1). [9]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Sortilin (SORT1). [10]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Sortilin (SORT1). [11]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Sortilin (SORT1). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Sortilin (SORT1). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Sortilin (SORT1). [15]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Sortilin (SORT1). [16]
Manganese DMKT129 Investigative Manganese decreases the expression of Sortilin (SORT1). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid increases the degradation of Sortilin (SORT1). [17]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
5 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
6 Evaluation of early biomarkers of muscle anabolic response to testosterone. J Cachexia Sarcopenia Muscle. 2011 Mar;2(1):45-56. doi: 10.1007/s13539-011-0021-y. Epub 2011 Feb 26.
7 Unique transcriptome, pathways, and networks in the human endometrial fibroblast response to progesterone in endometriosis. Biol Reprod. 2011 Apr;84(4):801-15.
8 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
9 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
10 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
11 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
12 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
14 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
17 Fish oil and fenofibrate prevented phosphorylation-dependent hepatic sortilin 1 degradation in Western diet-fed mice. J Biol Chem. 2014 Aug 8;289(32):22437-49. doi: 10.1074/jbc.M114.548933. Epub 2014 Jul 1.
18 Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology. 2007 May;28(3):478-89.
19 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.