General Information of Drug Off-Target (DOT) (ID: OTL6SH28)

DOT Name Receptor-type tyrosine-protein phosphatase N2 (PTPRN2)
Synonyms R-PTP-N2; EC 3.1.3.-; EC 3.1.3.48; Islet cell autoantigen-related protein; IAR; ICAAR; Phogrin
Gene Name PTPRN2
Related Disease
Chronic kidney disease ( )
Chronic renal failure ( )
Non-insulin dependent diabetes ( )
Attention deficit hyperactivity disorder ( )
Autoimmune disease ( )
Breast cancer ( )
Breast carcinoma ( )
Duane retraction syndrome ( )
Hepatocellular carcinoma ( )
Malignant neoplasm ( )
Metabolic disorder ( )
Myocardial infarction ( )
Neoplasm ( )
Prostate cancer ( )
Prostate carcinoma ( )
Schizophrenia ( )
Type-1/2 diabetes ( )
Atopic dermatitis ( )
Prediabetes syndrome ( )
Psoriasis ( )
UniProt ID
PTPR2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2QEP; 4HTI; 4HTJ
EC Number
3.1.3.-; 3.1.3.48
Pfam ID
PF11548 ; PF14948 ; PF00102
Sequence
MGPPLPLLLLLLLLLPPRVLPAAPSSVPRGRQLPGRLGCLLEEGLCGASEACVNDGVFGR
CQKVPAMDFYRYEVSPVALQRLRVALQKLSGTGFTWQDDYTQYVMDQELADLPKTYLRRP
EASSPARPSKHSVGSERRYSREGGAALANALRRHLPFLEALSQAPASDVLARTHTAQDRP
PAEGDDRFSESILTYVAHTSALTYPPGSRTQLREDLLPRTLGQLQPDELSPKVDSGVDRH
HLMAALSAYAAQRPPAPPGEGSLEPQYLLRAPSRMPRPLLAPAAPQKWPSPLGDSEDPSS
TGDGARIHTLLKDLQRQPAEVRGLSGLELDGMAELMAGLMQGVDHGVARGSPGRAALGES
GEQADGPKATLRGDSFPDDGVQDDDDRLYQEVHRLSATLGGLLQDHGSRLLPGALPFARP
LDMERKKSEHPESSLSSEEETAGVENVKSQTYSKDLLGQQPHSEPGAAAFGELQNQMPGP
SKEEQSLPAGAQEALSDGLQLEVQPSEEEARGYIVTDRDPLRPEEGRRLVEDVARLLQVP
SSAFADVEVLGPAVTFKVSANVQNVTTEDVEKATVDNKDKLEETSGLKILQTGVGSKSKL
KFLPPQAEQEDSTKFIALTLVSLACILGVLLASGLIYCLRHSSQHRLKEKLSGLGGDPGA
DATAAYQELCRQRMATRPPDRPEGPHTSRISSVSSQFSDGPIPSPSARSSASSWSEEPVQ
SNMDISTGHMILSYMEDHLKNKNRLEKEWEALCAYQAEPNSSFVAQREENVPKNRSLAVL
TYDHSRVLLKAENSHSHSDYINASPIMDHDPRNPAYIATQGPLPATVADFWQMVWESGCV
VIVMLTPLAENGVRQCYHYWPDEGSNLYHIYEVNLVSEHIWCEDFLVRSFYLKNLQTNET
RTVTQFHFLSWYDRGVPSSSRSLLDFRRKVNKCYRGRSCPIIVHCSDGAGRSGTYVLIDM
VLNKMAKGAKEIDIAATLEHLRDQRPGMVQTKEQFEFALTAVAEEVNAILKALPQ
Function
Plays a role in vesicle-mediated secretory processes. Required for normal accumulation of secretory vesicles in hippocampus, pituitary and pancreatic islets. Required for the accumulation of normal levels of insulin-containing vesicles and preventing their degradation. Plays a role in insulin secretion in response to glucose stimuli. Required for normal accumulation of the neurotransmitters norepinephrine, dopamine and serotonin in the brain. In females, but not in males, required for normal accumulation and secretion of pituitary hormones, such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Required to maintain normal levels of renin expression and renin release. May regulate catalytic active protein-tyrosine phosphatases such as PTPRA through dimerization. Has phosphatidylinositol phosphatase activity; the PIPase activity is involved in its ability to regulate insulin secretion. Can dephosphorylate phosphatidylinositol 4,5-biphosphate (PI(4,5)P2), phosphatidylinositol 5-phosphate and phosphatidylinositol 3-phosphate. Regulates PI(4,5)P2 level in the plasma membrane and localization of cofilin at the plasma membrane and thus is indirectly involved in regulation of actin dynamics related to cell migration and metastasis; upon hydrolyzation of PI(4,5)P2 cofilin is released from the plasma membrane and acts in the cytoplasm in severing F-actin filaments.
Tissue Specificity Highest levels in brain and pancreas . Lower levels in trachea, prostate, stomach and spinal cord .
KEGG Pathway
Type I diabetes mellitus (hsa04940 )
Reactome Pathway
Neutrophil degranulation (R-HSA-6798695 )

Molecular Interaction Atlas (MIA) of This DOT

20 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Chronic kidney disease DISW82R7 Definitive Genetic Variation [1]
Chronic renal failure DISGG7K6 Definitive Genetic Variation [1]
Non-insulin dependent diabetes DISK1O5Z Definitive Genetic Variation [2]
Attention deficit hyperactivity disorder DISL8MX9 Strong Genetic Variation [3]
Autoimmune disease DISORMTM Strong Biomarker [4]
Breast cancer DIS7DPX1 Strong Biomarker [5]
Breast carcinoma DIS2UE88 Strong Genetic Variation [6]
Duane retraction syndrome DISOEBK2 Strong Altered Expression [7]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [8]
Malignant neoplasm DISS6SNG Strong Genetic Variation [6]
Metabolic disorder DIS71G5H Strong Posttranslational Modification [9]
Myocardial infarction DIS655KI Strong Genetic Variation [10]
Neoplasm DISZKGEW Strong Altered Expression [7]
Prostate cancer DISF190Y Strong Genetic Variation [11]
Prostate carcinoma DISMJPLE Strong Genetic Variation [11]
Schizophrenia DISSRV2N Strong Genetic Variation [12]
Type-1/2 diabetes DISIUHAP Strong Altered Expression [13]
Atopic dermatitis DISTCP41 Limited Genetic Variation [14]
Prediabetes syndrome DISH2I53 Limited Biomarker [15]
Psoriasis DIS59VMN Limited Genetic Variation [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [16]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [17]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [18]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [19]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [21]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [22]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [23]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [24]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [16]
Testosterone DM7HUNW Approved Testosterone increases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [24]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [25]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [16]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [27]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [28]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [30]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [31]
ELLAGIC ACID DMX8BS5 Investigative ELLAGIC ACID increases the expression of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [20]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [26]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [29]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the methylation of Receptor-type tyrosine-protein phosphatase N2 (PTPRN2). [26]
------------------------------------------------------------------------------------

References

1 Genome-Wide Association Studies of Metabolites in Patients with CKD Identify Multiple Loci and Illuminate Tubular Transport Mechanisms.J Am Soc Nephrol. 2018 May;29(5):1513-1524. doi: 10.1681/ASN.2017101099. Epub 2018 Mar 15.
2 Genome-wide association study of coronary artery calcified atherosclerotic plaque in African Americans with type 2 diabetes.BMC Genet. 2017 Dec 8;18(1):105. doi: 10.1186/s12863-017-0572-9.
3 Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD.Sci Transl Med. 2011 Aug 10;3(95):95ra75. doi: 10.1126/scitranslmed.3002464.
4 Conserved epitopes in the protein tyrosine phosphatase family of diabetes autoantigens.Ann N Y Acad Sci. 2008 Dec;1150:245-7. doi: 10.1196/annals.1447.035.
5 Aberrant Expression of proPTPRN2 in Cancer Cells Confers Resistance to Apoptosis.Cancer Res. 2015 May 1;75(9):1846-58. doi: 10.1158/0008-5472.CAN-14-2718. Epub 2015 Apr 15.
6 Genome-Wide Association Study to Identify Susceptibility Loci That Modify Radiation-Related Risk for Breast Cancer After Childhood Cancer.J Natl Cancer Inst. 2017 Nov 1;109(11):djx058. doi: 10.1093/jnci/djx058.
7 Partial chromosome 7 duplication with a phenotype mimicking the HOXA1 spectrum disorder.Ophthalmic Genet. 2013 Mar-Jun;34(1-2):90-6. doi: 10.3109/13816810.2012.718850. Epub 2012 Sep 6.
8 Epigenome-wide association study in hepatocellular carcinoma: Identification of stochastic epigenetic mutations through an innovative statistical approach.Oncotarget. 2017 Jun 27;8(26):41890-41902. doi: 10.18632/oncotarget.17462.
9 The association of genetically controlled CpG methylation (cg158269415) of protein tyrosine phosphatase, receptor type N2 (PTPRN2) with childhood obesity.Sci Rep. 2019 Mar 19;9(1):4855. doi: 10.1038/s41598-019-40486-w.
10 Association of a polymorphism of BTN2A1 with myocardial infarction in East Asian populations.Atherosclerosis. 2011 Mar;215(1):145-52. doi: 10.1016/j.atherosclerosis.2010.12.005. Epub 2010 Dec 15.
11 Identification of a Radiosensitivity Molecular Signature Induced by Enzalutamide in Hormone-sensitive and Hormone-resistant Prostate Cancer Cells.Sci Rep. 2019 Jun 20;9(1):8838. doi: 10.1038/s41598-019-44991-w.
12 Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways.Am J Hum Genet. 2019 Aug 1;105(2):334-350. doi: 10.1016/j.ajhg.2019.06.012.
13 On the pathogenicity of autoantigen-specific T-cell receptors.Diabetes. 2008 May;57(5):1321-30. doi: 10.2337/db07-1129. Epub 2008 Feb 25.
14 Genome-wide comparative analysis of atopic dermatitis and psoriasis gives insight into opposing genetic mechanisms.Am J Hum Genet. 2015 Jan 8;96(1):104-20. doi: 10.1016/j.ajhg.2014.12.004.
15 HLA-DQ8-associated T cell responses to the diabetes autoantigen phogrin (IA-2 beta) in human prediabetes.J Immunol. 2004 Mar 15;172(6):3955-62. doi: 10.4049/jimmunol.172.6.3955.
16 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
17 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
18 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
19 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
20 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
21 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
22 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
23 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
24 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
25 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
26 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
27 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
28 Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets. Int J Cancer. 2003 Mar 20;104(2):204-12.
29 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
30 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
31 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
32 Interactive gene expression pattern in prostate cancer cells exposed to phenolic antioxidants. Life Sci. 2002 Mar 1;70(15):1821-39.