General Information of Drug Off-Target (DOT) (ID: OTLTDGK7)

DOT Name Testican-1 (SPOCK1)
Synonyms Protein SPOCK
Gene Name SPOCK1
UniProt ID
TICN1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07648 ; PF10591 ; PF00086
Sequence
MPAIAVLAAAAAAWCFLQVESRHLDALAGGAGPNHGNFLDNDQWLSTVSQYDRDKYWNRF
RDDDYFRNWNPNKPFDQALDPSKDPCLKVKCSPHKVCVTQDYQTALCVSRKHLLPRQKKG
NVAQKHWVGPSNLVKCKPCPVAQSAMVCGSDGHSYTSKCKLEFHACSTGKSLATLCDGPC
PCLPEPEPPKHKAERSACTDKELRNLASRLKDWFGALHEDANRVIKPTSSNTAQGRFDTS
ILPICKDSLGWMFNKLDMNYDLLLDPSEINAIYLDKYEPCIKPLFNSCDSFKDGKLSNNE
WCYCFQKPGGLPCQNEMNRIQKLSKGKSLLGAFIPRCNEEGYYKATQCHGSTGQCWCVDK
YGNELAGSRKQGAVSCEEEQETSGDFGSGGSVVLLDDLEYERELGPKDKEGKLRVHTRAV
TEDDEDEDDDKEDEVGYIW
Function May play a role in cell-cell and cell-matrix interactions. May contribute to various neuronal mechanisms in the central nervous system.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Testican-1 (SPOCK1). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Testican-1 (SPOCK1). [13]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Testican-1 (SPOCK1). [15]
------------------------------------------------------------------------------------
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Testican-1 (SPOCK1). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Testican-1 (SPOCK1). [3]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Testican-1 (SPOCK1). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Testican-1 (SPOCK1). [5]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Testican-1 (SPOCK1). [6]
Triclosan DMZUR4N Approved Triclosan increases the expression of Testican-1 (SPOCK1). [7]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Testican-1 (SPOCK1). [8]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Testican-1 (SPOCK1). [9]
Enzalutamide DMGL19D Approved Enzalutamide decreases the expression of Testican-1 (SPOCK1). [10]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Testican-1 (SPOCK1). [10]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Testican-1 (SPOCK1). [11]
Curcumin DMQPH29 Phase 3 Curcumin increases the expression of Testican-1 (SPOCK1). [12]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Testican-1 (SPOCK1). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Testican-1 (SPOCK1). [16]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Testican-1 (SPOCK1). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Testican-1 (SPOCK1). [18]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Testican-1 (SPOCK1). [19]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Testican-1 (SPOCK1). [20]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Testican-1 (SPOCK1). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
8 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
9 Evaluation of developmental toxicity using undifferentiated human embryonic stem cells. J Appl Toxicol. 2015 Feb;35(2):205-18.
10 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Curcumin suppresses growth of mesothelioma cells in vitro and in vivo, in part, by stimulating apoptosis. Mol Cell Biochem. 2011 Nov;357(1-2):83-94. doi: 10.1007/s11010-011-0878-2. Epub 2011 May 19.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
14 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
15 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
18 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
19 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
20 Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro. 2017 Aug;42:247-254.
21 Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A. Arch Toxicol. 2018 Feb;92(2):995-1014.