General Information of Drug Off-Target (DOT) (ID: OTXQO55Y)

DOT Name Liprin-beta-2 (PPFIBP2)
Synonyms Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 2; PTPRF-interacting protein-binding protein 2
Gene Name PPFIBP2
Related Disease
Prostate carcinoma ( )
Familial prostate carcinoma ( )
Intrahepatic cholangiocarcinoma ( )
Prostate cancer, hereditary, 1 ( )
Congenital contractural arachnodactyly ( )
Biliary tract cancer ( )
Neoplasm ( )
Prostate cancer ( )
Prostate neoplasm ( )
UniProt ID
LIPB2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3QH9
Pfam ID
PF00536 ; PF07647
Sequence
MASDASHALEAALEQMDGIIAGTKTGADLSDGTCEPGLASPASYMNPFPVLHLIEDLRLA
LEMLELPQERAALLSQIPGPTAAYIKEWFEESLSQVNHHSAASNETYQERLARLEGDKES
LILQVSVLTDQVEAQGEKIRDLEVCLEGHQVKLNAAEEMLQQELLSRTSLETQKLDLMTE
VSELKLKLVGMEKEQREQEEKQRKAEELLQELRHLKIKVEELENERNQYEWKLKATKAEV
AQLQEQVALKDAEIERLHSQLSRTAALHSESHTERDQEIQRLKMGMETLLLANEDKDRRI
EELTGLLNQYRKVKEIVMVTQGPSERTLSINEEEPEGGFSKWNATNKDPEELFKQEMPPR
CSSPTVGPPPLPQKSLETRAQKKLSCSLEDLRSESVDKCMDGNQPFPVLEPKDSPFLAEH
KYPTLPGKLSGATPNGEAAKSPPTICQPDATGSSLLRLRDTESGWDDTAVVNDLSSTSSG
TESGPQSPLTPDGKRNPKGIKKFWGKIRRTQSGNFYTDTLGMAEFRRGGLRATAGPRLSR
TRDSKGQKSDANAPFAQWSTERVCAWLEDFGLAQYVIFARQWVSSGHTLLTATPQDMEKE
LGIKHPLHRKKLVLAVKAINTKQEEKSALLDHIWVTRWLDDIGLPQYKDQFHESRVDRRM
LQYLTVNDLLFLKVTSQLHHLSIKCAIHVLHVNKFNPHCLHRRPADESNLSPSEVVQWSN
HRVMEWLRSVDLAEYAPNLRGSGVHGGLIILEPRFTGDTLAMLLNIPPQKTLLRRHLTTK
FNALIGPEAEQEKREKMASPAYTPLTTTAKVRPRKLGFSHFGNIRKKKFDESTDYICPME
PSDGVSDSHRVYSGYRGLSPLDAPELDGLDQVGQIS
Function May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A.
Tissue Specificity Widely expressed.
Reactome Pathway
Receptor-type tyrosine-protein phosphatases (R-HSA-388844 )

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Prostate carcinoma DISMJPLE Definitive Genetic Variation [1]
Familial prostate carcinoma DISL9KNO Strong Biomarker [1]
Intrahepatic cholangiocarcinoma DIS6GOC8 Strong Biomarker [2]
Prostate cancer, hereditary, 1 DISE2P4L Strong Biomarker [1]
Congenital contractural arachnodactyly DISOM1K7 moderate Biomarker [3]
Biliary tract cancer DISBNYQL Limited Genetic Variation [4]
Neoplasm DISZKGEW Limited Altered Expression [4]
Prostate cancer DISF190Y Limited Genetic Variation [5]
Prostate neoplasm DISHDKGQ Limited Altered Expression [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Progesterone DMUY35B Approved Liprin-beta-2 (PPFIBP2) affects the response to substance of Progesterone. [26]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Liprin-beta-2 (PPFIBP2). [7]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Liprin-beta-2 (PPFIBP2). [8]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Liprin-beta-2 (PPFIBP2). [9]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Liprin-beta-2 (PPFIBP2). [10]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Liprin-beta-2 (PPFIBP2). [11]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Liprin-beta-2 (PPFIBP2). [12]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Liprin-beta-2 (PPFIBP2). [13]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Liprin-beta-2 (PPFIBP2). [15]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Liprin-beta-2 (PPFIBP2). [16]
Testosterone DM7HUNW Approved Testosterone increases the expression of Liprin-beta-2 (PPFIBP2). [16]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate decreases the expression of Liprin-beta-2 (PPFIBP2). [17]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Liprin-beta-2 (PPFIBP2). [18]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Liprin-beta-2 (PPFIBP2). [20]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Liprin-beta-2 (PPFIBP2). [22]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Liprin-beta-2 (PPFIBP2). [24]
Nitrobenzanthrone DMN6L70 Investigative Nitrobenzanthrone decreases the expression of Liprin-beta-2 (PPFIBP2). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Liprin-beta-2 (PPFIBP2). [14]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Liprin-beta-2 (PPFIBP2). [19]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Liprin-beta-2 (PPFIBP2). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Liprin-beta-2 (PPFIBP2). [23]
------------------------------------------------------------------------------------

References

1 Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci.Nat Genet. 2018 Jul;50(7):928-936. doi: 10.1038/s41588-018-0142-8. Epub 2018 Jun 11.
2 Metformin potentiates the effect of arsenic trioxide suppressing intrahepatic cholangiocarcinoma: roles of p38 MAPK, ERK3, and mTORC1.J Hematol Oncol. 2017 Feb 28;10(1):59. doi: 10.1186/s13045-017-0424-0.
3 lncRNA FLVCR1-AS1 regulates cell proliferation, migration and invasion by sponging miR-485-5p in human cholangiocarcinoma.Oncol Lett. 2019 Sep;18(3):2240-2247. doi: 10.3892/ol.2019.10577. Epub 2019 Jul 5.
4 Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer.Eur J Cancer. 2013 May;49(7):1725-40. doi: 10.1016/j.ejca.2012.12.002. Epub 2013 Jan 5.
5 Germline mutations in PPFIBP2 are associated with lethal prostate cancer.Prostate. 2018 Dec;78(16):1222-1228. doi: 10.1002/pros.23697. Epub 2018 Jul 24.
6 Large-scale association analysis in Asians identifies new susceptibility loci for prostate cancer.Nat Commun. 2015 Oct 7;6:8469. doi: 10.1038/ncomms9469.
7 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.
8 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
9 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
10 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
11 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
12 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
13 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
14 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
15 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
16 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
17 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
18 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
19 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
22 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
23 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
24 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
25 3-Nitrobenzanthrone promotes malignant transformation in human lung epithelial cells through the epiregulin-signaling pathway. Cell Biol Toxicol. 2022 Oct;38(5):865-887. doi: 10.1007/s10565-021-09612-1. Epub 2021 May 25.
26 Population-based in vitro hazard and concentration-response assessment of chemicals: the 1000 genomes high-throughput screening study. Environ Health Perspect. 2015 May;123(5):458-66. doi: 10.1289/ehp.1408775. Epub 2015 Jan 13.